메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3218-3225

Unsupervised object class discovery via saliency-guided multiple class learning

Author keywords

[No Author keywords available]

Indexed keywords

INTEGRATED FRAMEWORKS; MULTI-CLASS; MULTIPLE CLASS; MULTIPLE INSTANCE LEARNING; OBJECT CLASS; SALIENCY DETECTION; TRAINING OBJECTS;

EID: 84866696900     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248057     Document Type: Conference Paper
Times cited : (61)

References (38)
  • 2
    • 77955985702 scopus 로고    scopus 로고
    • Icoseg: Interactive cosegmentation with intelligent scribble guidance
    • 6, 7
    • D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. icoseg: Interactive cosegmentation with intelligent scribble guidance. In CVPR, 2010. 6, 7
    • (2010) CVPR
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Luo, J.4    Chen, T.5
  • 3
    • 80052910219 scopus 로고    scopus 로고
    • From co-saliency to cosegmentation: An efficient and fully unsupervised energy minimization model
    • 2, 7
    • K. Chang, T. Liu, and S. Lai. From co-saliency to cosegmentation: An efficient and fully unsupervised energy minimization model. In CVPR, 2011. 2, 7
    • (2011) CVPR
    • Chang, K.1    Liu, T.2    Lai, S.3
  • 5
    • 34948855941 scopus 로고    scopus 로고
    • An exemplar model for learning object classes
    • 7, 8
    • O. Chum and A. Zisserman. An exemplar model for learning object classes. In CVPR, 2007. 7, 8
    • (2007) CVPR
    • Chum, O.1    Zisserman, A.2
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • 4
    • A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. J. Royal Statist. Soc. Series B, 39(1):1-38, 1977. 4
    • (1977) J. Royal Statist. Soc. Series B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 12
    • 84863078680 scopus 로고    scopus 로고
    • Salient object detection by composition
    • 2, 3, 6, 7
    • J. Feng, Y. Wei, L. Tao, C. Zhang, and J. Sun. Salient object detection by composition. In ICCV, 2011. 2, 3, 6, 7
    • (2011) ICCV
    • Feng, J.1    Wei, Y.2    Tao, L.3    Zhang, C.4    Sun, J.5
  • 13
    • 34948832159 scopus 로고    scopus 로고
    • Object detection by contour segment networks
    • 1, 6
    • V. Ferrari, T. Tuytelaars, and L. V. Gool. Object detection by contour segment networks. In ECCV, 2006. 1, 6
    • (2006) ECCV
    • Ferrari, V.1    Tuytelaars, T.2    Gool, L.V.3
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • 3
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. of Comp. and Sys. Sci., 55(1):119-139, 1997. 3
    • (1997) J. of Comp. and Sys. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 33845575890 scopus 로고    scopus 로고
    • Unsupervised learning of categories from sets of partially matching image features
    • 1, 2, 6
    • K. Grauman and T. Darrell. Unsupervised learning of categories from sets of partially matching image features. In CVPR, 2006. 1, 2, 6
    • (2006) CVPR
    • Grauman, K.1    Darrell, T.2
  • 16
    • 35148814949 scopus 로고    scopus 로고
    • Saliency detection: A spectral residual approach
    • 2, 3
    • X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, 2007. 2, 3
    • (2007) CVPR
    • Hou, X.1    Zhang, L.2
  • 17
    • 2142830711 scopus 로고    scopus 로고
    • Maximum conditional likelihood via bound maximization and the cem algorithm
    • 5
    • T. Jebara and A. Pentland. Maximum conditional likelihood via bound maximization and the cem algorithm. In NIPS, 1998. 5
    • (1998) NIPS
    • Jebara, T.1    Pentland, A.2
  • 18
    • 51949105707 scopus 로고    scopus 로고
    • Unsupervised modeling of object categories using link analysis techniques
    • 1, 2, 6, 7
    • G. Kim, C. Faloutsos, and M. Hebert. Unsupervised modeling of object categories using link analysis techniques. In CVPR, 2008. 1, 2, 6, 7
    • (2008) CVPR
    • Kim, G.1    Faloutsos, C.2    Hebert, M.3
  • 19
    • 68849114784 scopus 로고    scopus 로고
    • Foreground focus: Unsupervised learning from partially matching images
    • 1, 2, 6
    • Y. J. Lee and K. Grauman. Foreground focus: Unsupervised learning from partially matching images. IJCV, 85:143-166, 2009. 1, 2, 6
    • (2009) IJCV , vol.85 , pp. 143-166
    • Lee, Y.J.1    Grauman, K.2
  • 20
    • 70450169648 scopus 로고    scopus 로고
    • Shape discovery from unlabeled image collections
    • 1, 2, 6
    • Y. J. Lee and K. Grauman. Shape discovery from unlabeled image collections. In CVPR, 2009. 1, 2, 6
    • (2009) CVPR
    • Lee, Y.J.1    Grauman, K.2
  • 21
    • 80052880043 scopus 로고    scopus 로고
    • Learning the easy things first: Self-paced visual category discovery
    • 1, 2, 6
    • Y. J. Lee and K. Grauman. Learning the easy things first: Self-paced visual category discovery. In CVPR, 2011. 1, 2, 6
    • (2011) CVPR
    • Lee, Y.J.1    Grauman, K.2
  • 22
    • 50649084971 scopus 로고    scopus 로고
    • Unsupervised image categorization and object localization using topic models and correspondences between images
    • 1, 2, 6
    • D. Liu and T. Chen. Unsupervised image categorization and object localization using topic models and correspondences between images. In ICCV, 2007. 1, 2, 6
    • (2007) ICCV
    • Liu, D.1    Chen, T.2
  • 23
    • 77953196304 scopus 로고    scopus 로고
    • Scene discovery by matrix factorization
    • 1
    • N. Loeff and A. Farhadi. Scene discovery by matrix factorization. In ECCV, 2008. 1
    • (2008) ECCV
    • Loeff, N.1    Farhadi, A.2
  • 24
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent
    • 3, 4, 5
    • L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In NIPS, 2000. 3, 4, 5
    • (2000) NIPS
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 26
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • 1, 2, 7, 8
    • B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006. 1, 2, 7, 8
    • (2006) CVPR
    • Russell, B.C.1    Efros, A.A.2    Sivic, J.3    Freeman, W.T.4    Zisserman, A.5
  • 27
    • 5044223783 scopus 로고    scopus 로고
    • Is bottom-up attention useful for object recognition
    • 2, 6
    • U. Rutishauser, D. Walther, C. Koch, and P. Perona. Is bottom-up attention useful for object recognition. In CVPR, 2004. 2, 6
    • (2004) CVPR
    • Rutishauser, U.1    Walther, D.2    Koch, C.3    Perona, P.4
  • 28
    • 84866659805 scopus 로고    scopus 로고
    • Expectation maximization algorithms for conditional likelihoods
    • 5
    • J. Salojarvi, K. Puolamaki, and S. Kaski. Expectation maximization algorithms for conditional likelihoods. In NIPS, 2005. 5
    • (2005) NIPS
    • Salojarvi, J.1    Puolamaki, K.2    Kaski, S.3
  • 29
    • 50649097874 scopus 로고    scopus 로고
    • 3d generic object categorization, localization and pose estimation
    • 6
    • S. Savarese and L. Fei-Fei. 3d generic object categorization, localization and pose estimation. In ICCV, 2007. 6
    • (2007) ICCV
    • Savarese, S.1    Fei-Fei, L.2
  • 31
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • 1, 6
    • J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008. 1, 6
    • (2008) CVPR
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 33
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • 1
    • P. A. Viola and M. J. Jones. Robust real-time face detection. IJCV, 57(2), 2004. 1
    • (2004) IJCV , vol.57 , Issue.2
    • Viola, P.A.1    Jones, M.J.2
  • 34
    • 45549083257 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • 1, 2, 3, 4, 5
    • P. A. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, 2006. 1, 2, 3, 4, 5
    • (2006) NIPS
    • Viola, P.A.1    Platt, J.C.2    Zhang, C.3
  • 36
    • 78751693866 scopus 로고    scopus 로고
    • Maximum margin multiple instance clustering
    • 1, 2, 3, 6, 7
    • D. Zhang, F. Wang, L. Si, and T. Li. Maximum margin multiple instance clustering. In IJCAI, 2009. 1, 2, 3, 6, 7
    • (2009) IJCAI
    • Zhang, D.1    Wang, F.2    Si, L.3    Li, T.4
  • 37
    • 68149124491 scopus 로고    scopus 로고
    • Multi-instance clustering with applications to multi-instance prediction
    • August 1, 2, 3, 6, 7
    • M.-L. Zhang and Z.-H. Zhou. Multi-instance clustering with applications to multi-instance prediction. Applied Intelligence, 31:47-68, August 2009. 1, 2, 3, 6, 7
    • (2009) Applied Intelligence , vol.31 , pp. 47-68
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 38
    • 57149122432 scopus 로고    scopus 로고
    • Unsupervised learning of probabilistic grammar-markov models for object categories
    • 1, 2, 6
    • L. Zhu, Y. Chen, and A. L. Yuille. Unsupervised learning of probabilistic grammar-markov models for object categories. IEEE Trans. PAMI, 31(10), 2009. 1, 2, 6
    • (2009) IEEE Trans. PAMI , vol.31 , Issue.10
    • Zhu, L.1    Chen, Y.2    Yuille, A.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.