-
1
-
-
84885591081
-
Simultaneous learning and alignment: Multi-instance and multi-pose learning
-
1, 3
-
B. Babenko, P. Dollár, Z. Tu, and S. Belongie. Simultaneous learning and alignment: Multi-instance and multi-pose learning. In ECCV workshop on Faces in Real-Life Images, 2008. 1, 3
-
(2008)
ECCV Workshop on Faces in Real-Life Images
-
-
Babenko, B.1
Dollár, P.2
Tu, Z.3
Belongie, S.4
-
2
-
-
77955985702
-
Icoseg: Interactive cosegmentation with intelligent scribble guidance
-
6, 7
-
D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. icoseg: Interactive cosegmentation with intelligent scribble guidance. In CVPR, 2010. 6, 7
-
(2010)
CVPR
-
-
Batra, D.1
Kowdle, A.2
Parikh, D.3
Luo, J.4
Chen, T.5
-
3
-
-
80052910219
-
From co-saliency to cosegmentation: An efficient and fully unsupervised energy minimization model
-
2, 7
-
K. Chang, T. Liu, and S. Lai. From co-saliency to cosegmentation: An efficient and fully unsupervised energy minimization model. In CVPR, 2011. 2, 7
-
(2011)
CVPR
-
-
Chang, K.1
Liu, T.2
Lai, S.3
-
4
-
-
80052948224
-
Global contrast based salient region detection
-
2, 3, 7
-
M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu. Global contrast based salient region detection. In CVPR, 2011. 2, 3, 7
-
(2011)
CVPR
-
-
Cheng, M.-M.1
Zhang, G.-X.2
Mitra, N.J.3
Huang, X.4
Hu, S.-M.5
-
5
-
-
34948855941
-
An exemplar model for learning object classes
-
7, 8
-
O. Chum and A. Zisserman. An exemplar model for learning object classes. In CVPR, 2007. 7, 8
-
(2007)
CVPR
-
-
Chum, O.1
Zisserman, A.2
-
6
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
4
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. J. Royal Statist. Soc. Series B, 39(1):1-38, 1977. 4
-
(1977)
J. Royal Statist. Soc. Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
7
-
-
79959728283
-
Localizing objects while learning their appearance
-
2, 7, 8
-
T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. Technical report, ETH Zurich, 2010. 2, 7, 8
-
(2010)
Technical Report ETH Zurich
-
-
Deselaers, T.1
Alexe, B.2
Ferrari, V.3
-
8
-
-
70450200878
-
Multiple component learning for object detection
-
1, 3
-
P. Dollár, B. Babenko, S. Belongie, P. Perona, and Z. Tu. Multiple component learning for object detection. In ECCV, 2008. 1, 3
-
(2008)
ECCV
-
-
Dollár, P.1
Babenko, B.2
Belongie, S.3
Perona, P.4
Tu, Z.5
-
9
-
-
0003922190
-
-
Wiley-Interscience, 2 edition, Nov. 1, 2, 6
-
R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition). Wiley-Interscience, 2 edition, Nov. 2001. 1, 2, 6
-
(2001)
Pattern Classification (2nd Edition)
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
10
-
-
33144466753
-
One-shot learning of object categories
-
1, 2, 6
-
L. Fei-Fei, R. Fergus, S. Member, and P. Perona. One-shot learning of object categories. IEEE Trans. PAMI, 28(4), 2006. 1, 2, 6
-
(2006)
IEEE Trans. PAMI
, vol.28
, Issue.4
-
-
Fei-Fei, L.1
Fergus, R.2
Member, S.3
Perona, P.4
-
11
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
1
-
P. F. Felzenszwalb, R. B. Girshick, and D. R. David A. McAllester. Object detection with discriminatively trained part-based models. IEEE Trans. PAMI, 32(9), 2010. 1
-
(2010)
IEEE Trans. PAMI
, vol.32
, Issue.9
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
David, D.R.3
McAllester, A.4
-
12
-
-
84863078680
-
Salient object detection by composition
-
2, 3, 6, 7
-
J. Feng, Y. Wei, L. Tao, C. Zhang, and J. Sun. Salient object detection by composition. In ICCV, 2011. 2, 3, 6, 7
-
(2011)
ICCV
-
-
Feng, J.1
Wei, Y.2
Tao, L.3
Zhang, C.4
Sun, J.5
-
13
-
-
34948832159
-
Object detection by contour segment networks
-
1, 6
-
V. Ferrari, T. Tuytelaars, and L. V. Gool. Object detection by contour segment networks. In ECCV, 2006. 1, 6
-
(2006)
ECCV
-
-
Ferrari, V.1
Tuytelaars, T.2
Gool, L.V.3
-
14
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
3
-
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. of Comp. and Sys. Sci., 55(1):119-139, 1997. 3
-
(1997)
J. of Comp. and Sys. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
15
-
-
33845575890
-
Unsupervised learning of categories from sets of partially matching image features
-
1, 2, 6
-
K. Grauman and T. Darrell. Unsupervised learning of categories from sets of partially matching image features. In CVPR, 2006. 1, 2, 6
-
(2006)
CVPR
-
-
Grauman, K.1
Darrell, T.2
-
16
-
-
35148814949
-
Saliency detection: A spectral residual approach
-
2, 3
-
X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, 2007. 2, 3
-
(2007)
CVPR
-
-
Hou, X.1
Zhang, L.2
-
17
-
-
2142830711
-
Maximum conditional likelihood via bound maximization and the cem algorithm
-
5
-
T. Jebara and A. Pentland. Maximum conditional likelihood via bound maximization and the cem algorithm. In NIPS, 1998. 5
-
(1998)
NIPS
-
-
Jebara, T.1
Pentland, A.2
-
18
-
-
51949105707
-
Unsupervised modeling of object categories using link analysis techniques
-
1, 2, 6, 7
-
G. Kim, C. Faloutsos, and M. Hebert. Unsupervised modeling of object categories using link analysis techniques. In CVPR, 2008. 1, 2, 6, 7
-
(2008)
CVPR
-
-
Kim, G.1
Faloutsos, C.2
Hebert, M.3
-
19
-
-
68849114784
-
Foreground focus: Unsupervised learning from partially matching images
-
1, 2, 6
-
Y. J. Lee and K. Grauman. Foreground focus: Unsupervised learning from partially matching images. IJCV, 85:143-166, 2009. 1, 2, 6
-
(2009)
IJCV
, vol.85
, pp. 143-166
-
-
Lee, Y.J.1
Grauman, K.2
-
20
-
-
70450169648
-
Shape discovery from unlabeled image collections
-
1, 2, 6
-
Y. J. Lee and K. Grauman. Shape discovery from unlabeled image collections. In CVPR, 2009. 1, 2, 6
-
(2009)
CVPR
-
-
Lee, Y.J.1
Grauman, K.2
-
21
-
-
80052880043
-
Learning the easy things first: Self-paced visual category discovery
-
1, 2, 6
-
Y. J. Lee and K. Grauman. Learning the easy things first: Self-paced visual category discovery. In CVPR, 2011. 1, 2, 6
-
(2011)
CVPR
-
-
Lee, Y.J.1
Grauman, K.2
-
22
-
-
50649084971
-
Unsupervised image categorization and object localization using topic models and correspondences between images
-
1, 2, 6
-
D. Liu and T. Chen. Unsupervised image categorization and object localization using topic models and correspondences between images. In ICCV, 2007. 1, 2, 6
-
(2007)
ICCV
-
-
Liu, D.1
Chen, T.2
-
23
-
-
77953196304
-
Scene discovery by matrix factorization
-
1
-
N. Loeff and A. Farhadi. Scene discovery by matrix factorization. In ECCV, 2008. 1
-
(2008)
ECCV
-
-
Loeff, N.1
Farhadi, A.2
-
24
-
-
84898978212
-
Boosting algorithms as gradient descent
-
3, 4, 5
-
L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In NIPS, 2000. 3, 4, 5
-
(2000)
NIPS
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
25
-
-
54849391900
-
Localized content based image retrieval
-
1, 2, 6, 7
-
R. Rahmani, S. A. Goldman, H. Zhang, J. Krettek, and J. E. Fritts. Localized content based image retrieval. IEEE Trans. PAMI, 30(11), 2008. 1, 2, 6, 7
-
(2008)
IEEE Trans. PAMI
, vol.30
, Issue.11
-
-
Rahmani, R.1
Goldman, S.A.2
Zhang, H.3
Krettek, J.4
Fritts, J.E.5
-
26
-
-
33845596932
-
Using multiple segmentations to discover objects and their extent in image collections
-
1, 2, 7, 8
-
B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006. 1, 2, 7, 8
-
(2006)
CVPR
-
-
Russell, B.C.1
Efros, A.A.2
Sivic, J.3
Freeman, W.T.4
Zisserman, A.5
-
27
-
-
5044223783
-
Is bottom-up attention useful for object recognition
-
2, 6
-
U. Rutishauser, D. Walther, C. Koch, and P. Perona. Is bottom-up attention useful for object recognition. In CVPR, 2004. 2, 6
-
(2004)
CVPR
-
-
Rutishauser, U.1
Walther, D.2
Koch, C.3
Perona, P.4
-
28
-
-
84866659805
-
Expectation maximization algorithms for conditional likelihoods
-
5
-
J. Salojarvi, K. Puolamaki, and S. Kaski. Expectation maximization algorithms for conditional likelihoods. In NIPS, 2005. 5
-
(2005)
NIPS
-
-
Salojarvi, J.1
Puolamaki, K.2
Kaski, S.3
-
29
-
-
50649097874
-
3d generic object categorization, localization and pose estimation
-
6
-
S. Savarese and L. Fei-Fei. 3d generic object categorization, localization and pose estimation. In ICCV, 2007. 6
-
(2007)
ICCV
-
-
Savarese, S.1
Fei-Fei, L.2
-
30
-
-
80052878786
-
Real-time human pose recognition in parts from single depth images
-
1
-
J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In CVPR, 2011. 1
-
(2011)
CVPR
-
-
Shotton, J.1
Fitzgibbon, A.W.2
Cook, M.3
Sharp, T.4
Finocchio, M.5
Moore, R.6
Kipman, A.7
Blake, A.8
-
31
-
-
51949114829
-
Semantic texton forests for image categorization and segmentation
-
1, 6
-
J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008. 1, 6
-
(2008)
CVPR
-
-
Shotton, J.1
Johnson, M.2
Cipolla, R.3
-
32
-
-
77955915402
-
Unsupervised object discovery: A comparison
-
1, 2
-
T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine. Unsupervised object discovery: A comparison. IJCV, 2009. 1, 2
-
(2009)
IJCV
-
-
Tuytelaars, T.1
Lampert, C.H.2
Blaschko, M.B.3
Buntine, W.4
-
33
-
-
2142812371
-
Robust real-time face detection
-
1
-
P. A. Viola and M. J. Jones. Robust real-time face detection. IJCV, 57(2), 2004. 1
-
(2004)
IJCV
, vol.57
, Issue.2
-
-
Viola, P.A.1
Jones, M.J.2
-
34
-
-
45549083257
-
Multiple instance boosting for object detection
-
1, 2, 3, 4, 5
-
P. A. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, 2006. 1, 2, 3, 4, 5
-
(2006)
NIPS
-
-
Viola, P.A.1
Platt, J.C.2
Zhang, C.3
-
35
-
-
84898944155
-
Maximum margin clustering
-
1, 2, 3
-
L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In NIPS, 2005. 1, 2, 3
-
(2005)
NIPS
-
-
Xu, L.1
Neufeld, J.2
Larson, B.3
Schuurmans, D.4
-
36
-
-
78751693866
-
Maximum margin multiple instance clustering
-
1, 2, 3, 6, 7
-
D. Zhang, F. Wang, L. Si, and T. Li. Maximum margin multiple instance clustering. In IJCAI, 2009. 1, 2, 3, 6, 7
-
(2009)
IJCAI
-
-
Zhang, D.1
Wang, F.2
Si, L.3
Li, T.4
-
37
-
-
68149124491
-
Multi-instance clustering with applications to multi-instance prediction
-
August 1, 2, 3, 6, 7
-
M.-L. Zhang and Z.-H. Zhou. Multi-instance clustering with applications to multi-instance prediction. Applied Intelligence, 31:47-68, August 2009. 1, 2, 3, 6, 7
-
(2009)
Applied Intelligence
, vol.31
, pp. 47-68
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
38
-
-
57149122432
-
Unsupervised learning of probabilistic grammar-markov models for object categories
-
1, 2, 6
-
L. Zhu, Y. Chen, and A. L. Yuille. Unsupervised learning of probabilistic grammar-markov models for object categories. IEEE Trans. PAMI, 31(10), 2009. 1, 2, 6
-
(2009)
IEEE Trans. PAMI
, vol.31
, Issue.10
-
-
Zhu, L.1
Chen, Y.2
Yuille, A.L.3
|