메뉴 건너뛰기




Volumn , Issue , 2013, Pages 47-50

Bagging support vector machine approaches for pulmonary nodule detection

Author keywords

Bagging; CAD system; Ensemble learning; MRMR method; Pulmonary nodules; Support vector machine; Two dimensional principal component analysis

Indexed keywords

BAGGING; CAD SYSTEM; ENSEMBLE LEARNING; MRMR METHOD; PULMONARY NODULES; TWO-DIMENSIONAL PRINCIPAL COMPONENT ANALYSIS;

EID: 84893243257     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CoDIT.2013.6689518     Document Type: Conference Paper
Times cited : (9)

References (22)
  • 1
    • 84880896208 scopus 로고    scopus 로고
    • The American Cancer Society
    • Cancer Facts and Figs, 2009. The American Cancer Society
    • (2009) Cancer Facts and Figs
  • 4
    • 27744522078 scopus 로고    scopus 로고
    • Computer-Aided diagnosis: A shape classification of pulmonary nodules imaged by high-resolution CT
    • Iwano S., Nakamura T., Kamioka Y., Ishigaki T., Computer-Aided diagnosis: A shape classification of pulmonary nodules imaged by high-resolution CT, Computerized Medical Imaging and Graphics, 2005, 29:565-570
    • (2005) Computerized Medical Imaging and Graphics , vol.29 , pp. 565-570
    • Iwano, S.1    Nakamura, T.2    Kamioka, Y.3    Ishigaki, T.4
  • 5
    • 44149087054 scopus 로고    scopus 로고
    • Computeraided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT
    • Iwano S., Nakamura T., Kamioka Y., Ikeda M., Ishigaki T., Computeraided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT, Computerized Medical Imaging and Graphics, 2008, 32:416-422
    • (2008) Computerized Medical Imaging and Graphics , vol.32 , pp. 416-422
    • Iwano, S.1    Nakamura, T.2    Kamioka, Y.3    Ikeda, M.4    Ishigaki, T.5
  • 6
    • 24344440231 scopus 로고    scopus 로고
    • Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system
    • Lin D-T., Yan C-R., Chen W-T., Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system, Computerized Medical Imaging and Graphics, 29:447-458
    • Computerized Medical Imaging and Graphics , vol.29 , pp. 447-458
    • Lin, D.-T.1    Yan, C.-R.2    Chen, W.-T.3
  • 8
    • 84859494310 scopus 로고    scopus 로고
    • Frequency and significance of pulmonary nodules on thin-section CT in patients with extrapulmonary malignant neoplasms
    • EURR-4910
    • Hanamiya M., Aoki T., Kawanami S., Korogi Y., Frequency and significance of pulmonary nodules on thin-section CT in patients with extrapulmonary malignant neoplasms, European Journal of Radiology, 2010, EURR-4910
    • (2010) European Journal of Radiology
    • Hanamiya, M.1    Aoki, T.2    Kawanami, S.3    Korogi, Y.4
  • 10
    • 84863006941 scopus 로고    scopus 로고
    • Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images
    • Choi W-J, Choi T-S, Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images, Information Sciences, 2012, 212:57-78
    • (2012) Information Sciences , vol.212 , pp. 57-78
    • Choi, W.-J.1    Choi, T.-S.2
  • 12
    • 77951647196 scopus 로고    scopus 로고
    • A new computationally efficient CAD system for pulmonary nodule detection in CT imagery
    • Messay T., Hardie R.C., Rogers S.K., A new computationally efficient CAD system for pulmonary nodule detection in CT imagery, Medical Image Analysis, 2010, 14:390-406
    • (2010) Medical Image Analysis , vol.14 , pp. 390-406
    • Messay, T.1    Hardie, R.C.2    Rogers, S.K.3
  • 13
    • 0001931577 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Machine Learning, vol. 5, pp. 1-38, 1998
    • (1998) Machine Learning , vol.5 , pp. 1-38
    • Bauer, E.1    Kohavi, R.2
  • 16
    • 67649202809 scopus 로고    scopus 로고
    • Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control
    • May
    • L. J. Hargrove, G. Li, K. B. Englehart, and B. S. Hudgins, "Principal Components Analysis Preprocessing for Improved Classification Accuracies in Pattern-Recognition-Based Myoelectric Control", IEEE Transactions on Biomedical Engineering, vol. 56, no. 5, May 2009
    • (2009) IEEE Transactions on Biomedical Engineering , vol.56 , Issue.5
    • Hargrove, L.J.1    Li, G.2    Englehart, K.B.3    Hudgins, B.S.4
  • 18
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, maxrelevance, and min-redundancy
    • Hanchuan Peng, Fuhui Long, and Chris Ding, 2005, "Feature selection based on mutual information: Criteria of max-dependency, maxrelevance, and min-redundancy," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 8, pp.1226-1238
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Hanchuan, P.1    Fuhui, L.2    Chris, D.3
  • 20
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf, B., Burges, C., Smola, A. (Eds. MIT Press
    • Platt, J.C., 1999. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C., Smola, A. (Eds.), Advances in Kernel Methods-Support Vector Learning., MIT Press, pp. 185-208
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, pp. 123-140, 1996
    • (1996) Mach. Learn , vol.24 , pp. 123-140
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.