메뉴 건너뛰기




Volumn , Issue , 2013, Pages 35-41

Feature selection strategies for classifying high dimensional astronomical data sets

Author keywords

astroinformatics; CRTS; feature selection; machine learning

Indexed keywords

BIG DATA; CATHODE RAY TUBES; DATA MINING; FEATURE EXTRACTION; LEARNING SYSTEMS; SURVEYS; TIME DOMAIN ANALYSIS;

EID: 84893225157     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BigData.2013.6691731     Document Type: Conference Paper
Times cited : (17)

References (21)
  • 2
    • 84893252012 scopus 로고    scopus 로고
    • US Virtual Astronomical Observatory
    • US Virtual Astronomical Observatory, http://www.usvao.org
  • 4
    • 67649187633 scopus 로고    scopus 로고
    • First results from the catalina real-time transient survey
    • A. J. Drake et al, "First Results from the Catalina Real-time Transient Survey," ApJ, 696, 870, 2009
    • (2009) ApJ , pp. 696-870
    • Drake, A.J.1
  • 5
    • 84893321184 scopus 로고    scopus 로고
    • Kepler Website
    • Kepler Website, http://kepler.nasa.gov
  • 6
    • 79956307645 scopus 로고    scopus 로고
    • On machine-learned classification of variable stars with sparse and noisy time-series data
    • J.W. Richards et al, "On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series Data," ApJ, Vol 733, Issue 1, 2011s
    • (2011) ApJ , vol.733 , Issue.1
    • Richards, J.W.1
  • 8
    • 36549029282 scopus 로고    scopus 로고
    • Automated supervised classification of variable stars
    • J. Debosscher et al., "Automated supervised classification of variable stars," A&A, vol. 475, pp. 1159-1183, 2007
    • (2007) A&A , vol.475 , pp. 1159-1183
    • Debosscher, J.1
  • 9
    • 84893234131 scopus 로고    scopus 로고
    • Caltech Time Series Characterization Service
    • Caltech Time Series Characterization Service, http://nirgun.caltech.edu: 8000
  • 10
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relief and relieff
    • R.S. Marko, K. Igor, "Theoretical and empirical analysis of Relief and ReliefF," Machine Learning Journal, 53:23-69, 2003.
    • (2003) Machine Learning Journal , vol.53 , pp. 23-69
    • Marko, R.S.1    Igor, K.2
  • 13
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • J. G. Kohavi R., "Wrappers for feature subset selection," Artificial Intelligence, Vol.97, No.1-2, pp.272-324, 1997
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 272-324
    • Kohavi, J.G.1
  • 14
    • 0027574734 scopus 로고
    • Improving k-nearest-neighbor density and error estimates
    • L. J. Buturovic, "Improving K-nearest-neighbor density and error estimates," Pattern Recognition, Vol 26(4), pp 611-616, 1993
    • (1993) Pattern Recognition , vol.26 , Issue.4 , pp. 611-616
    • Buturovic, L.J.1
  • 18
    • 61849101799 scopus 로고    scopus 로고
    • New approaches to object classification in synoptic sky surveys
    • C. Donalek et al, "New Approaches to Object Classification in Synoptic Sky Surveys," AIP Conf. Proc. 1082, 252-256, 2008
    • (2008) AIP Conf. Proc , vol.1082 , pp. 252-256
    • Donalek, C.1
  • 19
    • 84455163284 scopus 로고    scopus 로고
    • Discovery, classification, and scientific exploration of transient events from the catalina real-time transient survey
    • A. A. Mahabal et al, "Discovery, classification, and scientific exploration of transient events from the Catalina Real-Time Transient Survey," BASI, 39, 38, 2011
    • (2011) BASI , vol.39 , pp. 38
    • Mahabal, A.A.1
  • 20
    • 84863129253 scopus 로고    scopus 로고
    • In "rr lyrae stars, metal-poor stars, and the galaxy
    • ed. Mcwilliam
    • B. Sesar, in "RR Lyrae Stars, Metal-Poor Stars, and the Galaxy," ed. Mcwilliam, A. Carnegie Observatories Astrophysics Series, vol. 5, 135, 2011.
    • (2011) A. Carnegie Observatories Astrophysics Series , vol.5 , pp. 135
    • Sesar, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.