메뉴 건너뛰기




Volumn 119, Issue , 2014, Pages 99-117

A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artificial neural network (ANN)

Author keywords

Artificial neural network (ANN); Energy potential map; Energy supply planning; Environment and energy geographic information system (E GIS); Low carbon green city; Urban planning support system (PSS)

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLIMATE MODELS; ELECTRIC POWER GENERATION; HOUSING; HYDRAULIC MOTORS; INFORMATION MANAGEMENT; INFORMATION SYSTEMS; INFORMATION USE; LOCATION; NANOCRYSTALLINE MATERIALS; NEURAL NETWORKS; SOLAR ENERGY; TOPOGRAPHY; URBAN GROWTH; WIND; WIND POWER; WIND TURBINES;

EID: 84893017061     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2013.12.060     Document Type: Article
Times cited : (69)

References (91)
  • 1
    • 84892958911 scopus 로고    scopus 로고
    • Department of Economic and Social Affairs Population Division United Nations
    • World Urbanization Prospects: The 2009 Revision. New York;
    • Department of Economic and Social Affairs Population Division United Nations. World Urbanization Prospects: The 2009 Revision. New York; 2010.
    • (2010)
  • 2
    • 84871908472 scopus 로고    scopus 로고
    • Development of an environment and energy geographical information system (E-GIS) construction model to support environmentally friendly urban planning
    • Yeo I.A., Yoon S.H., Yee J.J. Development of an environment and energy geographical information system (E-GIS) construction model to support environmentally friendly urban planning. Appl Energy 2013, 104:723-739.
    • (2013) Appl Energy , vol.104 , pp. 723-739
    • Yeo, I.A.1    Yoon, S.H.2    Yee, J.J.3
  • 3
    • 84879097831 scopus 로고    scopus 로고
    • Development of an urban energy demand forecasting system to support environmentally friendly urban planning
    • Yeo I.A., Yoon S.H., Yee J.J. Development of an urban energy demand forecasting system to support environmentally friendly urban planning. Appl Energy 2013, 110:304-317.
    • (2013) Appl Energy , vol.110 , pp. 304-317
    • Yeo, I.A.1    Yoon, S.H.2    Yee, J.J.3
  • 4
    • 0038665928 scopus 로고    scopus 로고
    • National Renewable Energy Laboratory (NREL).
    • National Renewable Energy Laboratory (NREL). http://www.nrel.gov/gis/re_potential.html.
  • 5
    • 0037210643 scopus 로고    scopus 로고
    • Predicting the urban solar fraction: a methodology for energy advisers and planners based on GIS
    • Gadsden S., Rylatt M. Predicting the urban solar fraction: a methodology for energy advisers and planners based on GIS. Energy Build 2003, 35(1):37-48.
    • (2003) Energy Build , vol.35 , Issue.1 , pp. 37-48
    • Gadsden, S.1    Rylatt, M.2
  • 6
    • 77954864209 scopus 로고    scopus 로고
    • Multicriteria GIS modeling of wind and solar farms in Colorado
    • Janke J.R. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew Energy 2010, 35(10):2228-2234.
    • (2010) Renew Energy , vol.35 , Issue.10 , pp. 2228-2234
    • Janke, J.R.1
  • 7
    • 79957810990 scopus 로고    scopus 로고
    • Spatial analysis of renewable energy potential in the greater southern appalachian mountains
    • Arnette A.N., Zobel C.W. Spatial analysis of renewable energy potential in the greater southern appalachian mountains. Renew Energy 2011, 36(11):2785-2798.
    • (2011) Renew Energy , vol.36 , Issue.11 , pp. 2785-2798
    • Arnette, A.N.1    Zobel, C.W.2
  • 8
    • 79954574712 scopus 로고    scopus 로고
    • PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation
    • Charabi Y., Gastli A. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renew Energy 2011, 35(2):2554-2561.
    • (2011) Renew Energy , vol.35 , Issue.2 , pp. 2554-2561
    • Charabi, Y.1    Gastli, A.2
  • 9
    • 33845507329 scopus 로고    scopus 로고
    • Wind energy in Vietnam: resource assessment, development status and future implications
    • Nguyen K.Q. Wind energy in Vietnam: resource assessment, development status and future implications. Energy Policy 2007, 14(1):1405-1413.
    • (2007) Energy Policy , vol.14 , Issue.1 , pp. 1405-1413
    • Nguyen, K.Q.1
  • 10
    • 70349489980 scopus 로고    scopus 로고
    • GIS-based environmental assessment of wind energy systems for spatial planning: a case study from Western Turkey
    • Aydin N.Y., Kentel E., Duzgun S. GIS-based environmental assessment of wind energy systems for spatial planning: a case study from Western Turkey. Renew Sustain Energy Rev 2010, 14(1):364-373.
    • (2010) Renew Sustain Energy Rev , vol.14 , Issue.1 , pp. 364-373
    • Aydin, N.Y.1    Kentel, E.2    Duzgun, S.3
  • 11
    • 79960164872 scopus 로고    scopus 로고
    • A GIS based assessment of potential for windfarms in India
    • Hossain J., Sinha V., Kishore V.V.N. A GIS based assessment of potential for windfarms in India. Renew Energy 2011, 36(12):3257-3267.
    • (2011) Renew Energy , vol.36 , Issue.12 , pp. 3257-3267
    • Hossain, J.1    Sinha, V.2    Kishore, V.V.N.3
  • 12
    • 77957332671 scopus 로고    scopus 로고
    • A GIS-based interactive web decision support system for planning wind farms in Tuscany(Italy)
    • Mari R., Bottai L., Busillo C., Calastrini F., Gozzini B., Gualtieri G. A GIS-based interactive web decision support system for planning wind farms in Tuscany(Italy). Renew Energy 2011, 36(2):754-763.
    • (2011) Renew Energy , vol.36 , Issue.2 , pp. 754-763
    • Mari, R.1    Bottai, L.2    Busillo, C.3    Calastrini, F.4    Gozzini, B.5    Gualtieri, G.6
  • 13
    • 78651376396 scopus 로고    scopus 로고
    • GIS-based approach for the evaluation of wind energy potential: a case study for the Kujawsko-Pomorskie Voivodeship
    • Sliz-Szkliniarz B., Vogt J. GIS-based approach for the evaluation of wind energy potential: a case study for the Kujawsko-Pomorskie Voivodeship. Renew Sustain Energy Rev 2011, 15(3):1696-1707.
    • (2011) Renew Sustain Energy Rev , vol.15 , Issue.3 , pp. 1696-1707
    • Sliz-Szkliniarz, B.1    Vogt, J.2
  • 14
    • 77956180004 scopus 로고    scopus 로고
    • Gis-based procedures for hydropower potential spotting
    • Larentis D.G., Collischonn W., Olivera F., Tucci C.E.M. Gis-based procedures for hydropower potential spotting. Energy 2010, 35(10):4237-4243.
    • (2010) Energy , vol.35 , Issue.10 , pp. 4237-4243
    • Larentis, D.G.1    Collischonn, W.2    Olivera, F.3    Tucci, C.E.M.4
  • 15
    • 33947732072 scopus 로고    scopus 로고
    • GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany-Possibilities and limitations
    • Ondreka J., Rüsgen M.I., Stober I., Czurda K. GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany-Possibilities and limitations. Renew Energy 2007, 32(13):2186-2200.
    • (2007) Renew Energy , vol.32 , Issue.13 , pp. 2186-2200
    • Ondreka, J.1    Rüsgen, M.I.2    Stober, I.3    Czurda, K.4
  • 16
    • 78651415888 scopus 로고    scopus 로고
    • Development of potential map for ground and groundwater heat pump systems and the application to Tokyo
    • Nam Y., Ooka R. Development of potential map for ground and groundwater heat pump systems and the application to Tokyo. Energy Build 2011, 43(2-3):677-685.
    • (2011) Energy Build , vol.43 , Issue.2-3 , pp. 677-685
    • Nam, Y.1    Ooka, R.2
  • 17
    • 54149118549 scopus 로고    scopus 로고
    • Methodology based on geographic information systems for biomass logistics and transport optimization
    • Perpiñá C., Alfonso D., Pérez-Navarro A., Peñalvo E., Vargas C., Cárdenas V.R. Methodology based on geographic information systems for biomass logistics and transport optimization. Renew Energy 2009, 34(3):555-565.
    • (2009) Renew Energy , vol.34 , Issue.3 , pp. 555-565
    • Perpiñá, C.1    Alfonso, D.2    Pérez-Navarro, A.3    Peñalvo, E.4    Vargas, C.5    Cárdenas, V.R.6
  • 18
    • 79952818207 scopus 로고    scopus 로고
    • Can sunflower provide biofuel for inland demand? An integrated assessment of sustainability at regional scale
    • Ragaglini G., Triana F., Villani R., Bonari E. Can sunflower provide biofuel for inland demand? An integrated assessment of sustainability at regional scale. Energy 2011, 36(4):2111-2118.
    • (2011) Energy , vol.36 , Issue.4 , pp. 2111-2118
    • Ragaglini, G.1    Triana, F.2    Villani, R.3    Bonari, E.4
  • 19
    • 80052963986 scopus 로고    scopus 로고
    • Rice straw residue biomass potential for decentralized electricity generation: a GIS based study in Lakhimpur district of Assam, India
    • Hiloidhari M., Baruah D.C. Rice straw residue biomass potential for decentralized electricity generation: a GIS based study in Lakhimpur district of Assam, India. Energy Sustain Dev 2011, 15(3):214-222.
    • (2011) Energy Sustain Dev , vol.15 , Issue.3 , pp. 214-222
    • Hiloidhari, M.1    Baruah, D.C.2
  • 20
    • 80052550091 scopus 로고    scopus 로고
    • Multi-criteria, multi-objective and uncertainty analysis for agro-energy spatial modeling
    • Tenerelli P., Carver S. Multi-criteria, multi-objective and uncertainty analysis for agro-energy spatial modeling. Appl Geogr 2012, 32(2):724-736.
    • (2012) Appl Geogr , vol.32 , Issue.2 , pp. 724-736
    • Tenerelli, P.1    Carver, S.2
  • 21
    • 84881019784 scopus 로고    scopus 로고
    • A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland
    • Höhn J., Lehtonen E., Rasi S., Rintala J. A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Appl Energy 2014, 113:1-10.
    • (2014) Appl Energy , vol.113 , pp. 1-10
    • Höhn, J.1    Lehtonen, E.2    Rasi, S.3    Rintala, J.4
  • 22
    • 34447548628 scopus 로고    scopus 로고
    • GIS approach to the definition of capacity and generation ceilings of renewable energy technologies
    • Bravo J.D., Casals X.G., Pascua I.P. GIS approach to the definition of capacity and generation ceilings of renewable energy technologies. Energy Policy 2007, 35(10):4879-4892.
    • (2007) Energy Policy , vol.35 , Issue.10 , pp. 4879-4892
    • Bravo, J.D.1    Casals, X.G.2    Pascua, I.P.3
  • 23
    • 33847690774 scopus 로고    scopus 로고
    • Spatial mapping of renewable energy potential
    • Ramachandra T.V., Shruthi B.V. Spatial mapping of renewable energy potential. Renew Sustain Energy Rev 2007, 11(7):1460-1480.
    • (2007) Renew Sustain Energy Rev , vol.11 , Issue.7 , pp. 1460-1480
    • Ramachandra, T.V.1    Shruthi, B.V.2
  • 24
    • 64549119177 scopus 로고    scopus 로고
    • Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning
    • Belmonte S., Núñez V., Viramonte J.G., Franco J. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning. Renew Sustain Energy Rev 2009, 13(6-7):1475-1484.
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.6-7 , pp. 1475-1484
    • Belmonte, S.1    Núñez, V.2    Viramonte, J.G.3    Franco, J.4
  • 25
    • 33947402311 scopus 로고    scopus 로고
    • Satellite-derived solar resource maps for Brazil under SWERA project
    • Martins F.R., Pereira E.B., Abreu S.L. Satellite-derived solar resource maps for Brazil under SWERA project. Sol Energy 2007, 81(4):517-528.
    • (2007) Sol Energy , vol.81 , Issue.4 , pp. 517-528
    • Martins, F.R.1    Pereira, E.B.2    Abreu, S.L.3
  • 26
    • 77949912649 scopus 로고    scopus 로고
    • Estimating potential photovoltaic yield with r.sun and the open source geographical resources analysis support system
    • Nguyen H.T., Pearce J.M. Estimating potential photovoltaic yield with r.sun and the open source geographical resources analysis support system. Sol Energy 2010, 84(5):831-843.
    • (2010) Sol Energy , vol.84 , Issue.5 , pp. 831-843
    • Nguyen, H.T.1    Pearce, J.M.2
  • 27
    • 79960347716 scopus 로고    scopus 로고
    • Enhancement of bioenergy estimations within forests using airbone laser scanning and multispectral line scanner data
    • Straub C., Koch B. Enhancement of bioenergy estimations within forests using airbone laser scanning and multispectral line scanner data. Biomass Bioenergy 2011, 35(8):3561-3574.
    • (2011) Biomass Bioenergy , vol.35 , Issue.8 , pp. 3561-3574
    • Straub, C.1    Koch, B.2
  • 28
    • 84892988257 scopus 로고    scopus 로고
    • Statute notice of Ministry of Knowledge Economy No. 2009-029. Regulations regarding the establishment of energy usage planning and agreement procedures;
    • Statute notice of Ministry of Knowledge Economy No. 2009-029. Regulations regarding the establishment of energy usage planning and agreement procedures; 2009.
    • (2009)
  • 29
    • 84892973645 scopus 로고    scopus 로고
    • Law No. 8899. New energy and renewable energy development use distribution promotion act to promote the technical development, use, and distribution of new energy and renewable energy;
    • Law No. 8899. New energy and renewable energy development use distribution promotion act to promote the technical development, use, and distribution of new energy and renewable energy; 2008.
    • (2008)
  • 30
    • 79954493134 scopus 로고    scopus 로고
    • Estimation method for urban canopy geometric information using neural network
    • Ashie Y., Hirano K. Estimation method for urban canopy geometric information using neural network. J Archit Inst Japan Environ Eng 2008, 73(634):1417-1423.
    • (2008) J Archit Inst Japan Environ Eng , vol.73 , Issue.634 , pp. 1417-1423
    • Ashie, Y.1    Hirano, K.2
  • 31
    • 0042352648 scopus 로고    scopus 로고
    • Building cluster and shading in urban canyon for hot dry climate: Part 1: air and surface temperature measurements
    • Bourbia F., Awbi H.B. Building cluster and shading in urban canyon for hot dry climate: Part 1: air and surface temperature measurements. Renew Energy 2004, 29(2):249-262.
    • (2004) Renew Energy , vol.29 , Issue.2 , pp. 249-262
    • Bourbia, F.1    Awbi, H.B.2
  • 32
    • 2942741045 scopus 로고    scopus 로고
    • Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions, Energy and Buildings
    • Masmoudi S., Mazouz S. Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions, Energy and Buildings. Energy Build 2004, 36(7):710-719.
    • (2004) Energy Build , vol.36 , Issue.7 , pp. 710-719
    • Masmoudi, S.1    Mazouz, S.2
  • 33
    • 77954212458 scopus 로고    scopus 로고
    • Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme
    • Marciotto E.R., Oliveira A.P., Hanna S.R. Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Build Environ 2010, 45(11):2497-2505.
    • (2010) Build Environ , vol.45 , Issue.11 , pp. 2497-2505
    • Marciotto, E.R.1    Oliveira, A.P.2    Hanna, S.R.3
  • 34
    • 0032853262 scopus 로고    scopus 로고
    • Building canopy model for the analysis of urban climate
    • Ashie Y., Ca V.T., Asaeda T. Building canopy model for the analysis of urban climate. J Wind Eng Ind Aerodyn 1999, 81(1-3):237-248.
    • (1999) J Wind Eng Ind Aerodyn , vol.81 , Issue.1-3 , pp. 237-248
    • Ashie, Y.1    Ca, V.T.2    Asaeda, T.3
  • 35
    • 63649164524 scopus 로고    scopus 로고
    • Prediction of significant wave height using regressive support vector machines
    • Mahjoobi J., Mosabbeb E.A. Prediction of significant wave height using regressive support vector machines. Ocean Eng 2009, 36(5):339-347.
    • (2009) Ocean Eng , vol.36 , Issue.5 , pp. 339-347
    • Mahjoobi, J.1    Mosabbeb, E.A.2
  • 36
    • 84876132434 scopus 로고    scopus 로고
    • Diagnostic tools of energy performance for supermarkets using artificial neural network algorithms
    • Mavromatidis G., Acha S., Shah N. Diagnostic tools of energy performance for supermarkets using artificial neural network algorithms. Energy Build 2013, 62(7):304-314.
    • (2013) Energy Build , vol.62 , Issue.7 , pp. 304-314
    • Mavromatidis, G.1    Acha, S.2    Shah, N.3
  • 37
    • 0029332890 scopus 로고
    • Forecasting monthly electric load and energy for a fast growing utility using an artificial neural network
    • Islam S.M., Al-Alawi S.M., Ellithy K.A. Forecasting monthly electric load and energy for a fast growing utility using an artificial neural network. Electr Power Syst Res 1995, 34(1):1-9.
    • (1995) Electr Power Syst Res , vol.34 , Issue.1 , pp. 1-9
    • Islam, S.M.1    Al-Alawi, S.M.2    Ellithy, K.A.3
  • 39
    • 33845252907 scopus 로고    scopus 로고
    • Forecasting of Turkey's net electricity energy consumption on sectoral bases
    • Hamzaçebi C. Forecasting of Turkey's net electricity energy consumption on sectoral bases. Energy Policy 2007, 35(3):2009-2016.
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 2009-2016
    • Hamzaçebi, C.1
  • 40
    • 35648929481 scopus 로고    scopus 로고
    • Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies
    • Sözen A., Gülseven Z., Arcaklioǧlu E. Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies. Energy Policy 2007, 35(12):6491-6505.
    • (2007) Energy Policy , vol.35 , Issue.12 , pp. 6491-6505
    • Sözen, A.1    Gülseven, Z.2    Arcaklioǧlu, E.3
  • 41
    • 33845273062 scopus 로고    scopus 로고
    • Artificial neural network analysis of world green energy use
    • Midilli K.E., Dincer I., Rosen M.A. Artificial neural network analysis of world green energy use. Energy Policy 2007, 35(3):1731-1743.
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 1731-1743
    • Midilli, K.E.1    Dincer, I.2    Rosen, M.A.3
  • 42
    • 70449399289 scopus 로고    scopus 로고
    • Future projection of the energy dependency of Turkey using artificial neural network
    • Sözen A. Future projection of the energy dependency of Turkey using artificial neural network. Energy Policy 2009, 37(11):4827-4833.
    • (2009) Energy Policy , vol.37 , Issue.11 , pp. 4827-4833
    • Sözen, A.1
  • 43
    • 76649131245 scopus 로고    scopus 로고
    • Greek long-term energy consumption prediction using artificial neural networks
    • Ekonomou L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35(2):512-517.
    • (2010) Energy , vol.35 , Issue.2 , pp. 512-517
    • Ekonomou, L.1
  • 44
    • 79961029951 scopus 로고    scopus 로고
    • Determination and modelling of energy consumption in wheat production using neural networks: "a case study in Canterbury province, New Zealand"
    • Safa M., Samarasinghe S. Determination and modelling of energy consumption in wheat production using neural networks: "a case study in Canterbury province, New Zealand". Energy 2011, 36(8):5140-5147.
    • (2011) Energy , vol.36 , Issue.8 , pp. 5140-5147
    • Safa, M.1    Samarasinghe, S.2
  • 45
    • 79551528411 scopus 로고    scopus 로고
    • Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables
    • Kankal M., Akpinar A., Kömürcü M.I., Özşahin T.Ş. Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables. Appl Energy 2011, 88(5):1927-1939.
    • (2011) Appl Energy , vol.88 , Issue.5 , pp. 1927-1939
    • Kankal, M.1    Akpinar, A.2    Kömürcü, M.I.3    Özşahin, T.Ş.4
  • 46
    • 82355169491 scopus 로고    scopus 로고
    • Electric energy demands of Turkey in residential and industrial sectors
    • Bilgili M., Sahin B., Yasar A., Simsek E. Electric energy demands of Turkey in residential and industrial sectors. Renew Sustain Energy Rev 2012, 16(1):404-414.
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.1 , pp. 404-414
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3    Simsek, E.4
  • 47
    • 0030157056 scopus 로고    scopus 로고
    • Simulated hardware design of artificial neural networks for adaptive plant control
    • Chang C.S., Wang F., Liew A.C. Simulated hardware design of artificial neural networks for adaptive plant control. Electr Power Syst Res 1996, 37(3):231-240.
    • (1996) Electr Power Syst Res , vol.37 , Issue.3 , pp. 231-240
    • Chang, C.S.1    Wang, F.2    Liew, A.C.3
  • 48
    • 0032320833 scopus 로고    scopus 로고
    • Deriving a transient stability index by neural networks for power-system security assessment
    • Tso S.K., Gu X.P., Zeng Q.Y., Lo K.L. Deriving a transient stability index by neural networks for power-system security assessment. Eng Appl Artif Intell 1998, 11(6):771-779.
    • (1998) Eng Appl Artif Intell , vol.11 , Issue.6 , pp. 771-779
    • Tso, S.K.1    Gu, X.P.2    Zeng, Q.Y.3    Lo, K.L.4
  • 49
    • 33750936036 scopus 로고    scopus 로고
    • Machine learning for frequency estimation of power systems
    • Karapidakis E.S. Machine learning for frequency estimation of power systems. Appl Soft Comput 2007, 7(1):105-114.
    • (2007) Appl Soft Comput , vol.7 , Issue.1 , pp. 105-114
    • Karapidakis, E.S.1
  • 50
    • 1642373132 scopus 로고    scopus 로고
    • Wind resource assessment of an area using short term data correlated to a long term data set
    • Bechrakis D.A., Deane J.P., McKeogh E.J. Wind resource assessment of an area using short term data correlated to a long term data set. Sol Energy 2004, 76(6):725-732.
    • (2004) Sol Energy , vol.76 , Issue.6 , pp. 725-732
    • Bechrakis, D.A.1    Deane, J.P.2    McKeogh, E.J.3
  • 51
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
    • Cadenas E., Rivera W. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renew Energy 2009, 34(1):274-278.
    • (2009) Renew Energy , vol.34 , Issue.1 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 52
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • Fadare D.A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 2010, 87(3):934-942.
    • (2010) Appl Energy , vol.87 , Issue.3 , pp. 934-942
    • Fadare, D.A.1
  • 53
    • 73549100861 scopus 로고    scopus 로고
    • Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method
    • Cadenas E., Jaramillo O.A., Rivera W. Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method. Renew Energy 2010, 35(5):925-930.
    • (2010) Renew Energy , vol.35 , Issue.5 , pp. 925-930
    • Cadenas, E.1    Jaramillo, O.A.2    Rivera, W.3
  • 54
    • 79959855553 scopus 로고    scopus 로고
    • Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kW h produced by a wind turbine at a candidate site: a case study in the Canary Islands
    • Velázquez S., Cart J.A., Matías J.M. Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kW h produced by a wind turbine at a candidate site: a case study in the Canary Islands. Appl Energy 2011, 88(11):3869-3881.
    • (2011) Appl Energy , vol.88 , Issue.11 , pp. 3869-3881
    • Velázquez, S.1    Cart, J.A.2    Matías, J.M.3
  • 55
    • 84859053984 scopus 로고    scopus 로고
    • An intelligent computing model for wind speed prediction in renewable energy systems
    • Sheela G., Deepa S.N. An intelligent computing model for wind speed prediction in renewable energy systems. Procedia Eng 2012, 30:380-385.
    • (2012) Procedia Eng , vol.30 , pp. 380-385
    • Sheela, G.1    Deepa, S.N.2
  • 56
    • 84879450713 scopus 로고    scopus 로고
    • Weighted error functions in artificial neural networks for improved wind energy potential estimation
    • Jung S., Kwon S.D. Weighted error functions in artificial neural networks for improved wind energy potential estimation. Appl Energy 2013, 111:778-790.
    • (2013) Appl Energy , vol.111 , pp. 778-790
    • Jung, S.1    Kwon, S.D.2
  • 57
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: a case study
    • Mabel M.C., Fernandez E. Analysis of wind power generation and prediction using ANN: a case study. Renew Energy 2008, 33(5):986-992.
    • (2008) Renew Energy , vol.33 , Issue.5 , pp. 986-992
    • Mabel, M.C.1    Fernandez, E.2
  • 58
    • 65649123894 scopus 로고    scopus 로고
    • ANN-based modelling and estimation of daily global solar radiation data: a case study
    • Benghanem M., Mellit A., Alamri S.N. ANN-based modelling and estimation of daily global solar radiation data: a case study. Energy Conv Manage 2009, 50(7):1644-1655.
    • (2009) Energy Conv Manage , vol.50 , Issue.7 , pp. 1644-1655
    • Benghanem, M.1    Mellit, A.2    Alamri, S.N.3
  • 59
    • 63449096455 scopus 로고    scopus 로고
    • Modelling of solar energy potential in Nigeria using an artificial neural network model
    • Fadare D.A. Modelling of solar energy potential in Nigeria using an artificial neural network model. Appl Energy 2009, 86(9):1410-1422.
    • (2009) Appl Energy , vol.86 , Issue.9 , pp. 1410-1422
    • Fadare, D.A.1
  • 60
    • 78649852700 scopus 로고    scopus 로고
    • Modeling of solar radiation using remote sensing and artificial neural network in Turkey
    • Şenkal O. Modeling of solar radiation using remote sensing and artificial neural network in Turkey. Energy 2010, 35(12):4795-4801.
    • (2010) Energy , vol.35 , Issue.12 , pp. 4795-4801
    • Şenkal, O.1
  • 61
    • 84858386389 scopus 로고    scopus 로고
    • Historical weather data supported hybrid renewable energy forecasting using artificial neural network (ANN)
    • Hossain R., Ooa A.M.T., Shawkat Alia A.B.M. Historical weather data supported hybrid renewable energy forecasting using artificial neural network (ANN). Energy Procedia 2012, 14:1035-1040.
    • (2012) Energy Procedia , vol.14 , pp. 1035-1040
    • Hossain, R.1    Ooa, A.M.T.2    Shawkat Alia, A.B.M.3
  • 62
    • 84858396762 scopus 로고    scopus 로고
    • A review of solar energy modeling techniques
    • Khatib T., Mohamed A., Sopian K. A review of solar energy modeling techniques. Renew Sustain Energy Rev 2012, 16(5):2864-2869.
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.5 , pp. 2864-2869
    • Khatib, T.1    Mohamed, A.2    Sopian, K.3
  • 63
    • 84855874035 scopus 로고    scopus 로고
    • Estimation of global solar radiation using ANN over Turkey
    • Ozgoren M., Bilgili M., Sahin B. Estimation of global solar radiation using ANN over Turkey. Expert Syst Appl 2012, 39(5):5043-5051.
    • (2012) Expert Syst Appl , vol.39 , Issue.5 , pp. 5043-5051
    • Ozgoren, M.1    Bilgili, M.2    Sahin, B.3
  • 64
    • 84892989458 scopus 로고    scopus 로고
    • Solar radiation prediction using Artificial Neural Network techniques: a review. Renew Sustain Energy Rev; in Press. Corrected Proof.
    • Yadav AK, Chandel SS. Solar radiation prediction using Artificial Neural Network techniques: a review. Renew Sustain Energy Rev; in Press. Corrected Proof.
    • Yadav, A.K.1    Chandel, S.S.2
  • 65
    • 84873411994 scopus 로고    scopus 로고
    • Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data
    • Şahin M., Kaya Y., Uyar M. Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Adv Space Res 2013, 51(5):891-904.
    • (2013) Adv Space Res , vol.51 , Issue.5 , pp. 891-904
    • Şahin, M.1    Kaya, Y.2    Uyar, M.3
  • 66
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive solar building
    • Kalogirou S.A., Bojic M. Artificial neural networks for the prediction of the energy consumption of a passive solar building. Energy 2000, 25(5):479-491.
    • (2000) Energy , vol.25 , Issue.5 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 67
    • 84866149200 scopus 로고    scopus 로고
    • Modeling global solar radiation using particle swarm optimization (PSO)
    • Mohandes M.A. Modeling global solar radiation using particle swarm optimization (PSO). Sol Energy 2012, 86(11):3137-3145.
    • (2012) Sol Energy , vol.86 , Issue.11 , pp. 3137-3145
    • Mohandes, M.A.1
  • 68
    • 0033684135 scopus 로고    scopus 로고
    • Thermosiphon solar domestic water heating systems: long-term performance prediction using artificial neural networks
    • Kalogirou S.A., Panteliou S. Thermosiphon solar domestic water heating systems: long-term performance prediction using artificial neural networks. Sol Energy 2000, 69(2):163-174.
    • (2000) Sol Energy , vol.69 , Issue.2 , pp. 163-174
    • Kalogirou, S.A.1    Panteliou, S.2
  • 69
    • 57649222644 scopus 로고    scopus 로고
    • Artificial intelligence techniques for sizing photovoltaic systems: a review
    • Mellit A., Kalogirou S.A., Hontoria L., Shaari S. Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew Sustain Energy Rev 2009, 13(2):406-419.
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.2 , pp. 406-419
    • Mellit, A.1    Kalogirou, S.A.2    Hontoria, L.3    Shaari, S.4
  • 70
    • 13844306850 scopus 로고    scopus 로고
    • Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
    • González P.A., Zamarreño J.M. Prediction of hourly energy consumption in buildings based on a feedback artificial neural network. Energy Build 2005, 37(6):595-601.
    • (2005) Energy Build , vol.37 , Issue.6 , pp. 595-601
    • González, P.A.1    Zamarreño, J.M.2
  • 71
    • 33646523343 scopus 로고    scopus 로고
    • An innovative air-conditioning load forecasting model based on RBF neural network and combined residual error correction
    • Yao Y., Lian Z., Hou Z., Liu W. An innovative air-conditioning load forecasting model based on RBF neural network and combined residual error correction. Int J Refrig 2006, 29(4):528-538.
    • (2006) Int J Refrig , vol.29 , Issue.4 , pp. 528-538
    • Yao, Y.1    Lian, Z.2    Hou, Z.3    Liu, W.4
  • 72
    • 52349093047 scopus 로고    scopus 로고
    • Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
    • Neto A.H., Fiorelli F.A.S. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build 2008, 40(12):2169-2176.
    • (2008) Energy Build , vol.40 , Issue.12 , pp. 2169-2176
    • Neto, A.H.1    Fiorelli, F.A.S.2
  • 73
    • 70449532032 scopus 로고    scopus 로고
    • The prediction of heating energy consumption in a model house by using artificial neural networks in Denizli-Turkey
    • Dombayci O.A. The prediction of heating energy consumption in a model house by using artificial neural networks in Denizli-Turkey. Adv Eng Softw 2010, 41(2):141-147.
    • (2010) Adv Eng Softw , vol.41 , Issue.2 , pp. 141-147
    • Dombayci, O.A.1
  • 74
    • 34047099220 scopus 로고    scopus 로고
    • Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
    • Azadeh A., Ghaderi S.F., Tarverdian S., Saberi M. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Appl Math Comput 2007, 186(2):1731-1741.
    • (2007) Appl Math Comput , vol.186 , Issue.2 , pp. 1731-1741
    • Azadeh, A.1    Ghaderi, S.F.2    Tarverdian, S.3    Saberi, M.4
  • 75
    • 33846266227 scopus 로고    scopus 로고
    • Forecasting electricity market pricing using artificial neural networks
    • Pao H.T. Forecasting electricity market pricing using artificial neural networks. Energy Conv Manag 2007, 48(3):907-912.
    • (2007) Energy Conv Manag , vol.48 , Issue.3 , pp. 907-912
    • Pao, H.T.1
  • 76
    • 34247497156 scopus 로고    scopus 로고
    • Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network
    • Ermis K., Erek A., Dincer I. Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network. Int J Heat Mass Transf 2007, 50(15-16):3163-3175.
    • (2007) Int J Heat Mass Transf , vol.50 , Issue.15-16 , pp. 3163-3175
    • Ermis, K.1    Erek, A.2    Dincer, I.3
  • 77
    • 44449103194 scopus 로고    scopus 로고
    • Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
    • Azadeh A., Ghaderi S.F., Sohrabkhani S. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conv Manage 2008, 49(8):2272-2278.
    • (2008) Energy Conv Manage , vol.49 , Issue.8 , pp. 2272-2278
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 78
    • 58249135669 scopus 로고    scopus 로고
    • Electric load forecasting by support vector model
    • Hong W.C. Electric load forecasting by support vector model. Appl Math Model 2009, 33(5):2444-2454.
    • (2009) Appl Math Model , vol.33 , Issue.5 , pp. 2444-2454
    • Hong, W.C.1
  • 79
    • 84867231636 scopus 로고    scopus 로고
    • Integrated IDA-ANN-DEA for assessment and optimization of energy consumption in industrial sectors
    • Olanrewaju O.A., Jimoh A.A., Kholopane P.A. Integrated IDA-ANN-DEA for assessment and optimization of energy consumption in industrial sectors. Energy 2012, 46(1):629-635.
    • (2012) Energy , vol.46 , Issue.1 , pp. 629-635
    • Olanrewaju, O.A.1    Jimoh, A.A.2    Kholopane, P.A.3
  • 80
    • 84881354120 scopus 로고    scopus 로고
    • Optimum estimation and forecasting of renewable energy consumption by artificial neural networks
    • Azadeh A., Babazadeh R., Asadzadeh S.M. Optimum estimation and forecasting of renewable energy consumption by artificial neural networks. Renew Sustain Energy Rev 2013, 27:605-612.
    • (2013) Renew Sustain Energy Rev , vol.27 , pp. 605-612
    • Azadeh, A.1    Babazadeh, R.2    Asadzadeh, S.M.3
  • 81
    • 67650639040 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR-based electric load forecasting model
    • Hong W.C. Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int J Electr Power Energy Syst 2009, 31(7-8):409-417.
    • (2009) Int J Electr Power Energy Syst , vol.31 , Issue.7-8 , pp. 409-417
    • Hong, W.C.1
  • 82
    • 70350586743 scopus 로고    scopus 로고
    • Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
    • Magnier L., Haghighat F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Build Environ 2010, 45(3):739-746.
    • (2010) Build Environ , vol.45 , Issue.3 , pp. 739-746
    • Magnier, L.1    Haghighat, F.2
  • 83
    • 77949570422 scopus 로고    scopus 로고
    • Numerical optimization of site selection for offshore wind turbine installation using genetic algorithm
    • Lee K.H., Jun S.O., Pak K.H., Lee D.H., Lee K.W., Park J.P. Numerical optimization of site selection for offshore wind turbine installation using genetic algorithm. Curr Appl Phys 2010, 10(2):S302-S306.
    • (2010) Curr Appl Phys , vol.10 , Issue.2
    • Lee, K.H.1    Jun, S.O.2    Pak, K.H.3    Lee, D.H.4    Lee, K.W.5    Park, J.P.6
  • 84
    • 80051799113 scopus 로고    scopus 로고
    • Soft computing techniques toward modeling the water supplies of Cyprus
    • Iliadis L., Maris F., Tachos S. Soft computing techniques toward modeling the water supplies of Cyprus. Neural Networks 2011, 24(8):836-841.
    • (2011) Neural Networks , vol.24 , Issue.8 , pp. 836-841
    • Iliadis, L.1    Maris, F.2    Tachos, S.3
  • 85
    • 84861712862 scopus 로고    scopus 로고
    • Assessment of forecasting techniques for solar power production with no exogenous inputs
    • Pedro H.T.C., Coimbra C.F.M. Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol Energy 2012, 86(7):2017-2028.
    • (2012) Sol Energy , vol.86 , Issue.7 , pp. 2017-2028
    • Pedro, H.T.C.1    Coimbra, C.F.M.2
  • 86
    • 84863455323 scopus 로고    scopus 로고
    • Classification of power system disturbances using linear Kalman filter and fuzzy-expert system
    • Abdelsalam A.A., Eldesouky A.A., Sallam A.A. Classification of power system disturbances using linear Kalman filter and fuzzy-expert system. Int J Electr Power Energy Syst 2012, 43(1):688-695.
    • (2012) Int J Electr Power Energy Syst , vol.43 , Issue.1 , pp. 688-695
    • Abdelsalam, A.A.1    Eldesouky, A.A.2    Sallam, A.A.3
  • 87
    • 84878662812 scopus 로고    scopus 로고
    • Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler
    • Wei Z., Li X., Xu L., Cheng Y. Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler. Energy 2013, 55:683-692.
    • (2013) Energy , vol.55 , pp. 683-692
    • Wei, Z.1    Li, X.2    Xu, L.3    Cheng, Y.4
  • 88
    • 84881363320 scopus 로고    scopus 로고
    • Robust electricity consumption modeling of Turkey using singular value decomposition
    • Kavaklioglu K. Robust electricity consumption modeling of Turkey using singular value decomposition. Int J Electr Power Energy Syst 2014, 54:268-276.
    • (2014) Int J Electr Power Energy Syst , vol.54 , pp. 268-276
    • Kavaklioglu, K.1
  • 89
    • 84892967327 scopus 로고    scopus 로고
    • Neural Network Toolbox™ Getting Started Guide R2013b. The MathWorks Inc.;
    • Beale MH, Hagan MT, Demuth HB. Neural Network Toolbox™ Getting Started Guide R2013b. The MathWorks Inc.; 2013.
    • (2013)
    • Beale, M.H.1    Hagan, M.T.2    Demuth, H.B.3
  • 90
    • 77957308800 scopus 로고    scopus 로고
    • Modeling and prediction of Turkey's electricity consumption using support vector regression
    • Kavaklioglu K. Modeling and prediction of Turkey's electricity consumption using support vector regression. Appl Energy 2011, 88(1):368-375.
    • (2011) Appl Energy , vol.88 , Issue.1 , pp. 368-375
    • Kavaklioglu, K.1
  • 91
    • 70049111554 scopus 로고    scopus 로고
    • Exploring the potential of wind energy for a coastal state
    • Yue C.D., Yang M.H. Exploring the potential of wind energy for a coastal state. Energy Policy 2009, 37(10):3925-3940.
    • (2009) Energy Policy , vol.37 , Issue.10 , pp. 3925-3940
    • Yue, C.D.1    Yang, M.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.