메뉴 건너뛰기




Volumn 24, Issue 2, 2014, Pages 243-257

Piecewise evolutionary segmentation for feature extraction in time series models

Author keywords

Artificial neural networks; Evolutionary computing; Machine learning; Plant virus identification; Support vector machines; Torrential risk management

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VIRUSES; EXTRACTION; FEATURE EXTRACTION; LEARNING SYSTEMS; NEURAL NETWORKS; RISK ASSESSMENT; RISK MANAGEMENT; SUPPORT VECTOR MACHINES; TIME SERIES; VIRUSES;

EID: 84892843930     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-1212-y     Document Type: Article
Times cited : (7)

References (50)
  • 1
    • 70350733507 scopus 로고    scopus 로고
    • Feature extraction for time series data: an artificial neural network evolutionary training model for the management of mountainous watersheds
    • Glezakos TJ, Tsiligiridis TA, Yialouris CP, Maris F, Ferentinos KP (2009) Feature extraction for time series data: an artificial neural network evolutionary training model for the management of mountainous watersheds. Neurocomputing 73(1-3): 49-59.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 49-59
    • Glezakos, T.J.1    Tsiligiridis, T.A.2    Yialouris, C.P.3    Maris, F.4    Ferentinos, K.P.5
  • 5
    • 28444478112 scopus 로고    scopus 로고
    • Applying fuzzy theory and genetic algorithm to interpolate precipitation
    • Chang CL, Lo SL, Yu SL (2005) Applying fuzzy theory and genetic algorithm to interpolate precipitation. J Hydrol 314: 92-104.
    • (2005) J Hydrol , vol.314 , pp. 92-104
    • Chang, C.L.1    Lo, S.L.2    Yu, S.L.3
  • 6
    • 35349010023 scopus 로고    scopus 로고
    • A split-step particle swarm optimization algorithm in river stage forecasting
    • Chau KW (2007) A split-step particle swarm optimization algorithm in river stage forecasting. J Hydrol 346: 131-135.
    • (2007) J Hydrol , vol.346 , pp. 131-135
    • Chau, K.W.1
  • 7
    • 0042510907 scopus 로고    scopus 로고
    • Application of artificial neural network to the rapid feedback of potential ecological risk in flood diversion zone
    • Ni JR, Xue A (2003) Application of artificial neural network to the rapid feedback of potential ecological risk in flood diversion zone. Eng Appl Artif Intell 16: 105-119.
    • (2003) Eng Appl Artif Intell , vol.16 , pp. 105-119
    • Ni, J.R.1    Xue, A.2
  • 8
    • 0035676249 scopus 로고    scopus 로고
    • Applications of machine learning to ecological modelling
    • Recknagel F (2001) Applications of machine learning to ecological modelling. Ecol Model 146: 303-310.
    • (2001) Ecol Model , vol.146 , pp. 303-310
    • Recknagel, F.1
  • 9
    • 0742306458 scopus 로고    scopus 로고
    • Meta learning evolutionary artificial neural networks
    • Abraham A (2004) Meta learning evolutionary artificial neural networks. Neurocomputing 56: 1-38.
    • (2004) Neurocomputing , vol.56 , pp. 1-38
    • Abraham, A.1
  • 10
    • 36549078208 scopus 로고    scopus 로고
    • Analysis and test of efficient methods for building recursive deterministic perceptron neural networks
    • Elizondo DA, Birkenhead R, Gongora M, Taillard E, Luyima P (2007) Analysis and test of efficient methods for building recursive deterministic perceptron neural networks. Neural Netw 20: 1095-1108.
    • (2007) Neural Netw , vol.20 , pp. 1095-1108
    • Elizondo, D.A.1    Birkenhead, R.2    Gongora, M.3    Taillard, E.4    Luyima, P.5
  • 12
    • 10244243684 scopus 로고    scopus 로고
    • Meta-learning approaches to selecting time series models
    • Prudencio RBC, Ludermir TB (2004) Meta-learning approaches to selecting time series models. Neurocomputing 61: 121-137.
    • (2004) Neurocomputing , vol.61 , pp. 121-137
    • Prudencio, R.B.C.1    Ludermir, T.B.2
  • 14
    • 33845621875 scopus 로고    scopus 로고
    • A hybrid approach for feature subset selection using neural networks and ant colony optimization
    • Sivagaminathan RK, Ramakrishnan S (2007) A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Syst Appl 33: 49-60.
    • (2007) Expert Syst Appl , vol.33 , pp. 49-60
    • Sivagaminathan, R.K.1    Ramakrishnan, S.2
  • 15
    • 53949114438 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
    • Diaz-Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, Moncada-Herrera JA (2008) A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos Environ 42: 8331-8340.
    • (2008) Atmos Environ , vol.42 , pp. 8331-8340
    • Diaz-Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 16
    • 53849110638 scopus 로고    scopus 로고
    • BP neural network with rough set for short term load forecasting
    • Xiao Z, Ye S-J, Zhong B, Sun C-X (2009) BP neural network with rough set for short term load forecasting. Expert Syst Appl 36: 273-279.
    • (2009) Expert Syst Appl , vol.36 , pp. 273-279
    • Xiao, Z.1    Ye, S.-J.2    Zhong, B.3    Sun, C.-X.4
  • 17
    • 52949087146 scopus 로고    scopus 로고
    • Improving artificial neural networks' performance in seasonal time series forecasting
    • Hamzacebi C (2008) Improving artificial neural networks' performance in seasonal time series forecasting. Inform Sci 178: 4550-4559.
    • (2008) Inform Sci , vol.178 , pp. 4550-4559
    • Hamzacebi, C.1
  • 18
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends
    • Lu WZ, Wang WJ (2005) Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends. Chemosphere 59: 693-701.
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.Z.1    Wang, W.J.2
  • 19
    • 48749133695 scopus 로고    scopus 로고
    • Integrating GA-based time-scale feature extractions with SVMs for stock index forecasting
    • Huang S-C, Wu T-K (2008) Integrating GA-based time-scale feature extractions with SVMs for stock index forecasting. Expert Syst Appl 35: 2080-2088.
    • (2008) Expert Syst Appl , vol.35 , pp. 2080-2088
    • Huang, S.-C.1    Wu, T.-K.2
  • 20
    • 47349128149 scopus 로고    scopus 로고
    • A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM
    • Cao SG, Liu Y-B, Wang Y-P (2008) A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM. J China Univ Min Technol 18: 0172-0176.
    • (2008) J China Univ Min Technol , vol.18 , pp. 0172-0176
    • Cao, S.G.1    Liu, Y.-B.2    Wang, Y.-P.3
  • 21
    • 56549129567 scopus 로고    scopus 로고
    • Nonlinear noise reduction of chaotic time series based on multidimensional recurrent LS-SVM
    • Sun J, Zheng C, Zhou Y, Bai Y, Luo J (2008) Nonlinear noise reduction of chaotic time series based on multidimensional recurrent LS-SVM. Neurocomputing 71: 3675-3679.
    • (2008) Neurocomputing , vol.71 , pp. 3675-3679
    • Sun, J.1    Zheng, C.2    Zhou, Y.3    Bai, Y.4    Luo, J.5
  • 22
    • 67649389465 scopus 로고    scopus 로고
    • Use of random time-intervals (RTIs) generation for biometric verification
    • doi: 10. 1016/j. patcog. 2008. 12. 028
    • Laskaris NA, Zafeiriou SP, Garefa L (2009) Use of random time-intervals (RTIs) generation for biometric verification. Pattern Recogn. doi: 10. 1016/j. patcog. 2008. 12. 028.
    • (2009) Pattern Recogn
    • Laskaris, N.A.1    Zafeiriou, S.P.2    Garefa, L.3
  • 23
    • 34250818666 scopus 로고    scopus 로고
    • Comparison of neural network methods for infilling missing daily weather records
    • Coulibaly P, Evora ND (2007) Comparison of neural network methods for infilling missing daily weather records. J Hydrol 341: 27-41.
    • (2007) J Hydrol , vol.341 , pp. 27-41
    • Coulibaly, P.1    Evora, N.D.2
  • 24
    • 40649090413 scopus 로고    scopus 로고
    • Time series prediction using evolving radial basis function networks with new encoding scheme
    • Du H, Zhang N (2008) Time series prediction using evolving radial basis function networks with new encoding scheme. Neurocomputing 71: 1388-1400.
    • (2008) Neurocomputing , vol.71 , pp. 1388-1400
    • Du, H.1    Zhang, N.2
  • 25
    • 54049089920 scopus 로고    scopus 로고
    • A genetic algorithm approach to the spectral estimation of time series with noise and missed observations
    • doi: 10. 1016/j. ins. 2008. 08. 018
    • Hung J-C (2008) A genetic algorithm approach to the spectral estimation of time series with noise and missed observations. Inform Sci. doi: 10. 1016/j. ins. 2008. 08. 018.
    • (2008) Inform Sci.
    • Hung, J.-C.1
  • 26
    • 31444454383 scopus 로고    scopus 로고
    • Discovery of predictive rule sets for chlorophyll-a dynamics in the Nakdong River (Korea) by means of the hybrid evolutionary algorithm HEA
    • Cao H, Recknagel F, Joo GJ, Kim DK (2006) Discovery of predictive rule sets for chlorophyll-a dynamics in the Nakdong River (Korea) by means of the hybrid evolutionary algorithm HEA. Ecol Inf 1: 43-53.
    • (2006) Ecol Inf , vol.1 , pp. 43-53
    • Cao, H.1    Recknagel, F.2    Joo, G.J.3    Kim, D.K.4
  • 27
    • 27444431705 scopus 로고    scopus 로고
    • Greenhouse air temperature predictive control using the particle swarm optimisation algorithm
    • Coelho JP, Moura Oliveira PB, Boaventura Cunha J (2005) Greenhouse air temperature predictive control using the particle swarm optimisation algorithm. Comput Electron Agr 49: 330-344.
    • (2005) Comput Electron Agr , vol.49 , pp. 330-344
    • Coelho, J.P.1    Moura Oliveira, P.B.2    Boaventura Cunha, J.3
  • 28
    • 46749107461 scopus 로고    scopus 로고
    • Real-time wave forecasting using genetic programming
    • Gaur S, Deo MC (2008) Real-time wave forecasting using genetic programming. Ocean Eng 35(11-12): 1166-1172.
    • (2008) Ocean Eng , vol.35 , Issue.11-12 , pp. 1166-1172
    • Gaur, S.1    Deo, M.C.2
  • 29
    • 0000437839 scopus 로고    scopus 로고
    • Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia
    • Bodri L, Cermak V (2000) Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Adv Eng Softw 31: 311-321.
    • (2000) Adv Eng Softw , vol.31 , pp. 311-321
    • Bodri, L.1    Cermak, V.2
  • 30
    • 0032599451 scopus 로고    scopus 로고
    • Time series prediction with genetic algorithm designed neural networks: an empirical comparison with modern statistical models
    • Hansen JV, McDonald JB, Nelson RD (1999) Time series prediction with genetic algorithm designed neural networks: an empirical comparison with modern statistical models. Comput Intell 15(3): 171-184.
    • (1999) Comput Intell , vol.15 , Issue.3 , pp. 171-184
    • Hansen, J.V.1    McDonald, J.B.2    Nelson, R.D.3
  • 31
    • 78649672225 scopus 로고    scopus 로고
    • A review on time series data mining
    • Fu T (2011) A review on time series data mining. Eng Appl Artif Intel 24: 164-181.
    • (2011) Eng Appl Artif Intel , vol.24 , pp. 164-181
    • Fu, T.1
  • 34
    • 0035343084 scopus 로고    scopus 로고
    • Time series prediction and neural networks
    • Frank RJ, Davey N, Hunt SP (2001) Time series prediction and neural networks. J Intell Robot Syst 31(1-3): 91-103.
    • (2001) J Intell Robot Syst , vol.31 , Issue.1-3 , pp. 91-103
    • Frank, R.J.1    Davey, N.2    Hunt, S.P.3
  • 35
    • 34347215501 scopus 로고    scopus 로고
    • Pattern identification in dynamical systems via symbolic time series analysis
    • Rajagopalan V, Ray A, Samsi R, Mayer J (2007) Pattern identification in dynamical systems via symbolic time series analysis. Pattern Recogn 40(11): 2897-2907.
    • (2007) Pattern Recogn , vol.40 , Issue.11 , pp. 2897-2907
    • Rajagopalan, V.1    Ray, A.2    Samsi, R.3    Mayer, J.4
  • 36
    • 18344413389 scopus 로고    scopus 로고
    • Symbolic time-series analysis of neural data
    • Lesher S, Guan L, Cohen AH (2000) Symbolic time-series analysis of neural data. Neurocomputing 32-33: 1073-1081.
    • (2000) Neurocomputing , vol.32-33 , pp. 1073-1081
    • Lesher, S.1    Guan, L.2    Cohen, A.H.3
  • 37
    • 33846591980 scopus 로고    scopus 로고
    • Time delay estimation using fractional Fourier transform
    • Sharma KK, Joshi SD (2007) Time delay estimation using fractional Fourier transform. Signal Process 87: 853-865.
    • (2007) Signal Process , vol.87 , pp. 853-865
    • Sharma, K.K.1    Joshi, S.D.2
  • 38
    • 60649095623 scopus 로고    scopus 로고
    • Analysis of ultra-high-frequency financial data using advanced Fourier transforms
    • Giampaoli I, Ng WL, Constantinou N (2009) Analysis of ultra-high-frequency financial data using advanced Fourier transforms. Financ Res Lett 6: 47-53.
    • (2009) Financ Res Lett , vol.6 , pp. 47-53
    • Giampaoli, I.1    Ng, W.L.2    Constantinou, N.3
  • 39
    • 36849075749 scopus 로고    scopus 로고
    • The intertemporal relation between expected returns and risk
    • Bali TG (2008) The intertemporal relation between expected returns and risk. J Financ Econ 87: 101-131.
    • (2008) J Financ Econ , vol.87 , pp. 101-131
    • Bali, T.G.1
  • 40
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroscedasticity
    • Bollerslev T (1986) Generalized autoregressive conditional heteroscedasticity. J Econom 31: 307-327.
    • (1986) J Econom , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 41
    • 53649094891 scopus 로고    scopus 로고
    • Reexamination of stock price reaction to environmental performance: a GARCH application
    • Yamaguchi K (2008) Reexamination of stock price reaction to environmental performance: a GARCH application. Ecol Econ 68: 345-352.
    • (2008) Ecol Econ , vol.68 , pp. 345-352
    • Yamaguchi, K.1
  • 42
    • 26944478356 scopus 로고    scopus 로고
    • Segmenting time series: a survey and novel approach
    • M. Last, A. Kandel, and H. Bunke (Eds.), Singapore: World Scientific Pub Co Inc
    • Keogh E, Chu S, Hart D, Pazzani M (2004) Segmenting time series: a survey and novel approach. In: Last M, Kandel A, Bunke H (eds) Data mining in time series databases. World Scientific Pub Co Inc, Singapore, pp 1-21.
    • (2004) Data Mining in Time Series Databases , pp. 1-21
    • Keogh, E.1    Chu, S.2    Hart, D.3    Pazzani, M.4
  • 45
  • 46
    • 16244396765 scopus 로고    scopus 로고
    • A structure-adaptive piece-wise linear segments representation for time series
    • In: Zhang D, Gregoire E, DeGroot D (eds), IRI: IEEE systems, man, and cybernetics society
    • Wang XY, Wang ZO (2004) A structure-adaptive piece-wise linear segments representation for time series In: Zhang D, Gregoire E, DeGroot D (eds) Proceedings of the 2004 IEEE international conference on information reuse and integration, IRI: IEEE systems, man, and cybernetics society, pp 433-437.
    • (2004) Proceedings of the 2004 IEEE international conference on information reuse and integration , pp. 433-437
    • Wang, X.Y.1    Wang, Z.O.2
  • 47
  • 50
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • 27
    • Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2: 27: 1-27: 27.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.