메뉴 건너뛰기




Volumn 23, Issue 2, 2014, Pages 785-796

Robust online learned spatio-temporal context model for visual tracking

Author keywords

Multiple subspaces learning; Online boosting; Spatio temporal context; Visual tracking

Indexed keywords

COMPLEX ENVIRONMENTS; LONG-TERM TRACKING; ON-LINE BOOSTING; SPATIO-TEMPORAL; SUBSPACES LEARNING; TEMPORAL AND SPATIAL; UNCONSTRAINED ENVIRONMENTS; VISUAL TRACKING;

EID: 84892622551     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2013.2293430     Document Type: Article
Times cited : (50)

References (43)
  • 2
    • 3242681758 scopus 로고    scopus 로고
    • Support vector tracking
    • Aug
    • S. Avidan. Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 8, pp. 1064-1072, Aug. 2004
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.8 , pp. 1064-1072
    • Avidan, S.1
  • 3
    • 24644446560 scopus 로고    scopus 로고
    • Ensemble tracking
    • Jun
    • S. Avidan. Ensemble tracking. in Proc. IEEE CVPR, Jun. 2005, pp. 494-501
    • (2005) Proc. IEEE CVPR , pp. 494-501
    • Avidan, S.1
  • 4
    • 79959527478 scopus 로고    scopus 로고
    • Robust object tracking with online multiple instance learning
    • Aug
    • B. Babenko, M-H. Yang, and S. Belongie. Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1619-1632, Aug. 2011
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.8 , pp. 1619-1632
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 5
    • 70450188146 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • B. Babenko, M-H. Yang, and S. J. Belongie. Visual tracking with online multiple instance learning. in Proc. CVPR, 2009, pp. 983-990
    • (2009) Proc. CVPR , pp. 983-990
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.J.3
  • 7
    • 84966204312 scopus 로고
    • Numerical methods for computing angles between linear subspaces
    • Jul
    • A. Bjoerck and G. H. Golub. Numerical methods for computing angles between linear subspaces. Math. Comput., vol. 27, no. 123, pp. 579-594, Jul. 1973
    • (1973) Math. Comput , vol.27 , Issue.123 , pp. 579-594
    • Bjoerck, A.1    Golub, G.H.2
  • 8
    • 84875875622 scopus 로고    scopus 로고
    • Structured visual tracking with dynamic graph
    • New York, NY, USA: Springer-Verlag
    • Z. Cai, L. Wen, J. Yang, Z. Lei, and S. Z. Li. Structured visual tracking with dynamic graph. in ACCV, vol. 3. New York, NY, USA: Springer-Verlag, 2012, pp. 86-97
    • (2012) ACCV , vol.3 , pp. 86-97
    • Cai, Z.1    Wen, L.2    Yang, J.3    Lei, Z.4    Li., S.Z.5
  • 9
    • 0033682434 scopus 로고    scopus 로고
    • Real-Time tracking of nonrigid objects using mean shift
    • Jun
    • D. Comaniciu, V. Ramesh, and P. Meer. Real-Time tracking of nonrigid objects using mean shift. in Proc. IEEE CVPR, vol. 2. Jun. 2000, pp. 142-149
    • (2000) Proc. IEEE CVPR , vol.2 , pp. 142-149
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 10
    • 80052910974 scopus 로고    scopus 로고
    • Context tracker: Exploring supporters and distracters in unconstrained environments
    • Jun
    • T. B. Dinh, N. Vo, and G. G. Medioni. Context tracker: Exploring supporters and distracters in unconstrained environments. in Proc. IEEE CVPR, Jun. 2011, pp. 1177-1184
    • (2011) Proc. IEEE CVPR , pp. 1177-1184
    • Dinh, T.B.1    Vo, N.2    Medioni, G.G.3
  • 13
    • 56749152262 scopus 로고    scopus 로고
    • Semi-supervised on-line boosting for robust tracking
    • Oct
    • H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. in Proc. 10th ECCV, Oct. 2008, pp. 234-247
    • (2008) Proc. 10th ECCV , pp. 234-247
    • Grabner, H.1    Leistner, C.2    Bischof, H.3
  • 14
    • 77956006668 scopus 로고    scopus 로고
    • Tracking the invisible: Learning where the object might be
    • Jun
    • H. Grabner, J. Matas, L. J. V. Gool, and P. C. Cattin. Tracking the invisible: Learning where the object might be. in Proc. CVPR, Jun. 2010, pp. 1285-1292
    • (2010) Proc. CVPR , pp. 1285-1292
    • Grabner, H.1    Matas, J.2    Gool, L.J.V.3    Cattin, P.C.4
  • 15
    • 80052907435 scopus 로고    scopus 로고
    • Branch and track
    • Jun
    • S. Gu and C. Tomasi. Branch and track. in Proc. IEEE CVPR, Jun. 2011, pp. 1169-1174
    • (2011) Proc. IEEE CVPR , pp. 1169-1174
    • Gu, S.1    Tomasi, C.2
  • 16
    • 0036903144 scopus 로고    scopus 로고
    • Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition
    • P. M. Hall, A. D. Marshall, and R. R. Martin. Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image Vis. Comput., vol. 20, nos. 13-14, pp. 1009-1016, 2002
    • (2002) Image Vis. Comput , vol.20 , Issue.13-14 , pp. 1009-1016
    • Hall, P.M.1    Marshall, A.D.2    Martin, R.R.3
  • 17
    • 79851515408 scopus 로고    scopus 로고
    • Incremental tensor subspace learning and its applications to foreground segmentation and tracking
    • Feb
    • W. Hu, X. Li, X. Zhang, X. Shi, S. J. Maybank, and Z. Zhang. Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int. J. Comput. Vis., vol. 91, no. 3, pp. 303-327, Feb. 2011
    • (2011) Int. J. Comput. Vis , vol.91 , Issue.3 , pp. 303-327
    • Hu, W.1    Li, X.2    Zhang, X.3    Shi, X.4    Maybank, S.J.5    Zhang, Z.6
  • 18
    • 0032136153 scopus 로고    scopus 로고
    • CONDENSATION - Conditional Density Propagation for Visual Tracking
    • M. Isard and A. Blake. CONDENSATION-Conditional density propagation for visual tracking. Int. J. Comput. Vis., vol. 29, no. 1, pp. 5-28, 1998 (Pubitemid 128523364)
    • (1998) International Journal of Computer Vision , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 19
    • 77956005443 scopus 로고    scopus 로고
    • P-n learning: Bootstrapping binary classifiers by structural constraints
    • Jun
    • Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by structural constraints. in Proc. IEEE CVPR, Jun. 2010, pp. 49-56
    • (2010) Proc. IEEE CVPR , pp. 49-56
    • Kalal, Z.1    Matas, J.2    Mikolajczyk, K.3
  • 20
    • 67349114560 scopus 로고    scopus 로고
    • A local-motion-based probabilistic model for visual tracking
    • Sep
    • M. Kristan, J. Pers, S. Kovacic, and A. Leonardis. A local-motion-based probabilistic model for visual tracking. Pattern Recognit., vol. 42, no. 9, pp. 2160-2168, Sep. 2009
    • (2009) Pattern Recognit , vol.42 , Issue.9 , pp. 2160-2168
    • Kristan, M.1    Pers, J.2    Kovacic, S.3    Leonardis, A.4
  • 21
    • 77955995205 scopus 로고    scopus 로고
    • Visual tracking decomposition
    • J. Kwon and K. M. Lee. Visual tracking decomposition. in Proc. CVPR, 2010, pp. 1269-1276
    • (2010) Proc. CVPR , pp. 1269-1276
    • Kwon, J.1    Lee, K.M.2
  • 22
    • 77955996533 scopus 로고    scopus 로고
    • Visual tracking via incremental self-Tuning particle filtering on the affine group
    • M. Li, W. Chen, K. Huang, and T. Tan. Visual tracking via incremental self-Tuning particle filtering on the affine group. in Proc. IEEE CVPR, Jun. 2010, pp. 1315-1322
    • (2010) Proc. IEEE CVPR, Jun , pp. 1315-1322
    • Li, M.1    Chen, W.2    Huang, K.3    Tan, T.4
  • 23
    • 84863079133 scopus 로고    scopus 로고
    • Graph mode-based contextual kernels for robust svm tracking
    • Nov
    • X. Li, A. R. Dick, H. Wang, C. Shen, and A. van den Hengel. Graph mode-based contextual kernels for robust SVM tracking. in Proc. IEEE ICCV, Nov. 2011, pp. 1156-1163
    • (2011) Proc. IEEE ICCV , pp. 1156-1163
    • Li, X.1    Dick, A.R.2    Wang, H.3    Shen, C.4    Hengel Den A.Van5
  • 24
    • 50649096335 scopus 로고    scopus 로고
    • Robust visual tracking based on incremental tensor subspace learning
    • Oct
    • X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo. Robust visual tracking based on incremental tensor subspace learning. in Proc. IEEE ICCV, Oct. 2007, pp. 1-8
    • (2007) Proc. IEEE ICCV , pp. 1-8
    • Li, X.1    Hu, W.2    Zhang, Z.3    Zhang, X.4    Luo, G.5
  • 25
    • 2442471723 scopus 로고    scopus 로고
    • On incremental and robust subspace learning
    • DOI 10.1016/j.patcog.2003.11.010, PII S003132030300431X
    • Y. Li. On incremental and robust subspace learning. Pattern Recognit., vol. 37, no. 7, pp. 1509-1518, 2004 (Pubitemid 38653378)
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1509-1518
    • Li, Y.1
  • 27
    • 79952194000 scopus 로고    scopus 로고
    • A survey of multilinear subspace learning for tensor data
    • Jul
    • H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. A survey of multilinear subspace learning for tensor data. Pattern Recognit., vol. 44, no. 7, pp. 1540-1551, Jul. 2011
    • (2011) Pattern Recognit , vol.44 , Issue.7 , pp. 1540-1551
    • Lu, H.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 28
    • 84863037067 scopus 로고    scopus 로고
    • Visual tracking using compensated motion model for mobile cameras
    • Sep
    • J-Y. Lu, Y-C. Wei, and A. C-W. Tang. Visual tracking using compensated motion model for mobile cameras. in Proc. IEEE ICIP, Sep. 2011, pp. 489-492
    • (2011) Proc. IEEE ICIP , pp. 489-492
    • Lu, J.-Y.1    Wei, Y.-C.2    Tang, A.C.-W.3
  • 29
    • 46449138124 scopus 로고    scopus 로고
    • Probabilistic visual tracking via robust template matching and incremental subspace update
    • Jul
    • X. Mei, S. K. Zhou, and F. Porikli. Probabilistic visual tracking via robust template matching and incremental subspace update. in Proc. IEEE ICME, Jul. 2007, pp. 1818-1821
    • (2007) Proc. IEEE ICME , pp. 1818-1821
    • Mei, X.1    Zhou, S.K.2    Porikli, F.3
  • 31
    • 0001502603 scopus 로고
    • The effects of contextual scenes on the identification of objects
    • Sep
    • S. Palmer. The effects of contextual scenes on the identification of objects. Memory Cognit., vol. 3, no. 5, pp. 519-526, Sep. 1975
    • (1975) Memory Cognit , vol.3 , Issue.5 , pp. 519-526
    • Palmer, S.1
  • 35
    • 0344982975 scopus 로고    scopus 로고
    • Weighted and robust incremental method for subspace learning
    • Oct
    • D. Skocaj and A. Leonardis. Weighted and robust incremental method for subspace learning. in Proc. 9th IEEE ICCV, Oct. 2003, pp. 1494-1501
    • (2003) Proc. 9th IEEE ICCV , pp. 1494-1501
    • Skocaj, D.1    Leonardis, A.2
  • 36
    • 84862861935 scopus 로고    scopus 로고
    • Detecting faces in impoverished images
    • 028, CBCL Memo 208 2001
    • A. Torralba and P. Sinha. Detecting faces in impoverished images. AI Memo 2001-028, CBCL Memo 208, 2001, pp. 1-14
    • (2001) AI Memo , pp. 1-14
    • Torralba, A.1    Sinha, P.2
  • 37
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • P. A. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object detection. in Proc. NIPS, 2005, pp. 1417-1424
    • (2005) Proc. NIPS , pp. 1417-1424
    • Viola, P.A.1    Platt, J.C.2    Zhang, C.3
  • 38
    • 84867863766 scopus 로고    scopus 로고
    • Online spatio-Temporal structural context learning for visual tracking
    • Oct
    • L. Wen, Z. Cai, Z. Lei, D. Yi, and S. Z. Li. Online spatio-Temporal structural context learning for visual tracking. in Proc. 12th ECCV, vol. 4. Oct. 2012, pp. 716-729
    • (2012) Proc. 12th ECCV , vol.4 , pp. 716-729
    • Wen, L.1    Cai, Z.2    Lei, Z.3    Yi, D.4    Li, S.Z.5
  • 41
    • 33846013241 scopus 로고    scopus 로고
    • Object tracking: A survey
    • A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput. Surv., vol. 38, no. 4, pp. 1-13, 2006
    • (2006) ACM Comput. Surv , vol.38 , Issue.4 , pp. 1-13
    • Yilmaz, A.1    Javed, O.2    Shah, M.3
  • 42
    • 57149128172 scopus 로고    scopus 로고
    • Online tracking and reacquisition using co-Trained generative and discriminative trackers
    • Oct
    • Q. Yu, T. B. Dinh, and G. G. Medioni. Online tracking and reacquisition using Co-Trained generative and discriminative trackers. in Proc. 10th ECCV, Oct. 2008, pp. 678-691
    • (2008) Proc. 10th ECCV , pp. 678-691
    • Yu, Q.1    Dinh, T.B.2    Medioni, G.G.3
  • 43
    • 51949116249 scopus 로고    scopus 로고
    • Sequential particle swarm optimization for visual tracking
    • Jun
    • X. Zhang, W. Hu, S. J. Maybank, X. Li, and M. Zhu. Sequential particle swarm optimization for visual tracking. in Proc. IEEE CVPR, Jun. 2008, pp. 1-8
    • (2008) Proc. IEEE CVPR , pp. 1-8
    • Zhang, X.1    Hu, W.2    Maybank, S.J.3    Li, X.4    Zhu, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.