메뉴 건너뛰기




Volumn 40, Issue 6, 2014, Pages 458-468

Wetting transition of nanodroplets of water on textured surfaces: A molecular dynamics study

Author keywords

Molecular dynamics; Nanodroplet; Rough surfaces; Wetting transition

Indexed keywords

CONTACT LINE PINNING; NANODROPLET; ROUGH SURFACES; SURFACE FRACTION; TEXTURED SURFACE; WATER DROPLETS; WETTING BEHAVIOUR; WETTING TRANSITIONS;

EID: 84892538896     PISSN: 08927022     EISSN: 10290435     Source Type: Journal    
DOI: 10.1080/08927022.2013.819578     Document Type: Article
Times cited : (70)

References (64)
  • 1
    • 74049147940 scopus 로고    scopus 로고
    • Learning from superhydrophobic plants: The use of hydrophilic areas on superhydrophobic surfaces for droplet control
    • Shirtcliffe NJ, McHale G, Newton I. Learning from superhydrophobic plants: The use of hydrophilic areas on superhydrophobic surfaces for droplet control. Langmuir. 2009;25: 14121-14128.
    • (2009) Langmuir. , vol.25 , pp. 14121-14128
    • Shirtcliffe, N.J.1    McHale, G.2    Newton, I.3
  • 2
    • 74049122588 scopus 로고    scopus 로고
    • Hierarchically sculptured plant surfaces and superhydrophobicity
    • Koch K, Bohn HF, Barthlott W. Hierarchically sculptured plant surfaces and superhydrophobicity. Langmuir. 2009;25: 14116-14120.
    • (2009) Langmuir. , vol.25 , pp. 14116-14120
    • Koch, K.1    Bohn, H.F.2    Barthlott, W.3
  • 3
    • 48249120378 scopus 로고    scopus 로고
    • Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: Surface materials versus geometry
    • Ding Y, Xu S, Zhang Y, Wang AC, Wang MH, Xiu Y, Wong CP, Wang L. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: Surface materials versus geometry. Nanotechnology. 2008;19:355708.
    • (2008) Nanotechnology , vol.19 , pp. 355708
    • Ding, Y.1    Xu, S.2    Zhang, Y.3    Wang, A.C.4    Wang, M.H.5    Xiu, Y.6    Wong, C.P.7    Wang, L.8
  • 4
    • 78650735093 scopus 로고    scopus 로고
    • Exploiting topographical texture to impart icephobicity
    • Meuler AJ, McKinley GH, Cohen E. Exploiting topographical texture to impart icephobicity. ACS Nano. 2010;4:7048-7052.
    • (2010) ACS Nano. , vol.4 , pp. 7048-7052
    • Meuler, A.J.1    McKinley, G.H.2    Cohen, E.3
  • 5
    • 79958083184 scopus 로고    scopus 로고
    • Fabrication, surface properties, and origin of superoleophobicity for a model textured surface
    • Zhao H, Law K-Y, Sambhy V. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface. Langmuir. 2011;27:5927-5935.
    • (2011) Langmuir. , vol.27 , pp. 5927-5935
    • Zhao, H.1    Law, K.-Y.2    Sambhy, V.3
  • 7
    • 69549124223 scopus 로고    scopus 로고
    • Superhydrophobic behavior achieved from hydrophilic surfaces
    • Wang J, Liu F, Chen H, Chen D. Superhydrophobic behavior achieved from hydrophilic surfaces. Appl Phys Lett. 2009; 95:084104.
    • (2009) Appl Phys Lett , vol.95 , pp. 084104
    • Wang, J.1    Liu, F.2    Chen, H.3    Chen, D.4
  • 8
    • 0037047610 scopus 로고    scopus 로고
    • How surface topography relates to materials' properties
    • Assender H, Bliznyuk V, Porfyrakis K. How surface topography relates to materials' properties. Science. 2002;297:973-976.
    • (2002) Science. , vol.297 , pp. 973-976
    • Assender, H.1    Bliznyuk, V.2    Porfyrakis, K.3
  • 9
    • 81555214159 scopus 로고    scopus 로고
    • Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces
    • Yan YY, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci. 2011;169:80-105.
    • (2011) Adv Colloid Interface Sci. , vol.169 , pp. 80-105
    • Yan, Y.Y.1    Gao, N.2    Barthlott, W.3
  • 10
    • 38349088309 scopus 로고    scopus 로고
    • Progress in superhydrophobic surface development
    • Roach P, Shirtcliffe NJ, Newton I. Progress in superhydrophobic surface development. Soft Matter. 2008;4:224-240.
    • (2008) Soft Matter. , vol.4 , pp. 224-240
    • Roach, P.1    Shirtcliffe, N.J.2    Newton, I.3
  • 11
    • 79957840672 scopus 로고    scopus 로고
    • Molecular simulation on the interactions of water with polypropylene surfaces
    • Dai Z-W, Ling J, Huang X-J, Wan L-S, Xu K. Molecular simulation on the interactions of water with polypropylene surfaces. J Phys Chem C. 2011;115:10702.
    • (2011) J Phys Chem C , vol.115 , pp. 10702
    • Dai, Z.-W.1    Ling, J.2    Huang, X.-J.3    Wan, L.-S.4    Xu, K.5
  • 12
    • 79952242004 scopus 로고    scopus 로고
    • Wetting transition of water on graphite and boron-nitride surfaces: A molecular dynamics study
    • Dutta RC, Khan S, Singh K. Wetting transition of water on graphite and boron-nitride surfaces: A molecular dynamics study. Fluid Phase Equilibria. 2011;302:310-315.
    • (2011) Fluid Phase Equilibria. , vol.302 , pp. 310-315
    • Dutta, R.C.1    Khan, S.2    Singh, K.3
  • 13
    • 77956355917 scopus 로고    scopus 로고
    • Molecular origins of fluorocarbon hydrophobicity
    • Dalvi VH, Rossky J. Molecular origins of fluorocarbon hydrophobicity. Proc Natl Acad Sci. 2010;107:13603.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 13603
    • Dalvi, V.H.1    Rossky, J.2
  • 14
    • 77955219768 scopus 로고    scopus 로고
    • Molecular dynamics simulations of urea-water binary droplets on flat and pillared hydrophobic surfaces
    • Koishi T, Yasuoka K, Zeng XC, Fujikawa S. Molecular dynamics simulations of urea-water binary droplets on flat and pillared hydrophobic surfaces. Faraday Discuss. 2010;146:185-193.
    • (2010) Faraday Discuss. , vol.146 , pp. 185-193
    • Koishi, T.1    Yasuoka, K.2    Zeng, X.C.3    Fujikawa, S.4
  • 15
    • 61549121675 scopus 로고    scopus 로고
    • Temperature-dependent wettability on a titanium dioxide surface
    • Park JH, Aluru R. Temperature-dependent wettability on a titanium dioxide surface. Mol Simul. 2009;35:31-37.
    • (2009) Mol Simul. , vol.35 , pp. 31-37
    • Park, J.H.1    Aluru, R.2
  • 16
    • 80053305021 scopus 로고    scopus 로고
    • Measurement of contactangle hysteresis for droplets on nanopillared surface and in the cassie and wenzel states: A molecular dynamics simulation study
    • Koishi T, Yasuoka K, Fujikawa S, Zeng C. Measurement of contactangle hysteresis for droplets on nanopillared surface and in the cassie and wenzel states: A molecular dynamics simulation study. ACS Nano. 2011;5:6834.
    • (2011) ACS Nano , vol.5 , pp. 6834
    • Koishi, T.1    Yasuoka, K.2    Fujikawa, S.3    Zeng, C.4
  • 17
    • 34547225114 scopus 로고    scopus 로고
    • Wetting of nanogrooved polymer surfaces
    • Hirvi JT, Pakkanen A. Wetting of nanogrooved polymer surfaces. Langmuir. 2007;23:7724-7729.
    • (2007) Langmuir. , vol.23 , pp. 7724-7729
    • Hirvi, J.T.1    Pakkanen, A.2
  • 18
    • 33847219296 scopus 로고    scopus 로고
    • Modeling of wetting: A study of nanowetting at rough and heterogeneous surfaces
    • Lundgren M, Allan NL, Cosgrove T. Modeling of wetting: A study of nanowetting at rough and heterogeneous surfaces. Langmuir. 2007;23:1187-1194.
    • (2007) Langmuir. , vol.23 , pp. 1187-1194
    • Lundgren, M.1    Allan, N.L.2    Cosgrove, T.3
  • 19
    • 34548259162 scopus 로고    scopus 로고
    • Effect of surface polarity on water contact angle and interfacial hydration structure
    • Giovambattista N, Debenedetti PG, Rossky J. Effect of surface polarity on water contact angle and interfacial hydration structure. J Phys Chem B. 2007;111:9581.
    • (2007) J Phys Chem B , vol.111 , pp. 9581
    • Giovambattista, N.1    Debenedetti, P.G.2    Rossky, J.3
  • 20
    • 85021792427 scopus 로고
    • Resistance of solid surfaces to wetting by water
    • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem Res. 1936;28:988-994.
    • (1936) Ind Eng Chem Res. , vol.28 , pp. 988-994
    • Wenzel, R.N.1
  • 22
    • 77749319321 scopus 로고    scopus 로고
    • Novel method of producing a superhydrophobic surface on Si
    • Liu B, Lange F. Novel method of producing a superhydrophobic surface on Si. Langmuir. 2010;26:3637-3640.
    • (2010) Langmuir. , vol.26 , pp. 3637-3640
    • Liu, B.1    Lange, F.2
  • 23
    • 77952819570 scopus 로고    scopus 로고
    • Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal
    • Bhushan B, Her K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir. 2010; 26:8207-8217.
    • (2010) Langmuir. , vol.26 , pp. 8207-8217
    • Bhushan, B.1    Her, K.2
  • 24
    • 77955851317 scopus 로고    scopus 로고
    • The effect of the aspect ratio on the hydrophobicity of microstructured polydimethylsiloxane (PDMS) robust surfaces
    • Yeo J, Kim S. The effect of the aspect ratio on the hydrophobicity of microstructured polydimethylsiloxane (PDMS) robust surfaces. Microsyst Technol. 2010;16:1457-1463.
    • (2010) Microsyst Technol. , vol.16 , pp. 1457-1463
    • Yeo, J.1    Kim, S.2
  • 25
    • 52649122717 scopus 로고    scopus 로고
    • Wetting on nanoporous alumina surface: Transition between Wenzel and Cassie states controlled by surface structure
    • Ran C, Ding G, Liu W, Deng Y, Hou W. Wetting on nanoporous alumina surface: Transition between Wenzel and Cassie states controlled by surface structure. Langmuir. 2008;24:9952-9955.
    • (2008) Langmuir. , vol.24 , pp. 9952-9955
    • Ran, C.1    Ding, G.2    Liu, W.3    Deng, Y.4    Hou, W.5
  • 26
    • 74049089400 scopus 로고    scopus 로고
    • Preparation of superhydrophobic surfaces of hierarchical structure of hybrid from nanoparticles and regular pillar-like pattern
    • Yeh K-Y, Cho K-H, Chen J. Preparation of superhydrophobic surfaces of hierarchical structure of hybrid from nanoparticles and regular pillar-like pattern. Langmuir. 2009;25:14187-14194.
    • (2009) Langmuir. , vol.25 , pp. 14187-14194
    • Yeh, K.-Y.1    Cho, K.-H.2    Chen, J.3
  • 27
    • 38349180695 scopus 로고    scopus 로고
    • Contact angle hysteresis on regular pillar-like hydrophobic surfaces
    • Yeh K-Y, Chen L-J, Chang Y. Contact angle hysteresis on regular pillar-like hydrophobic surfaces. Langmuir. 2008;24:245-251.
    • (2008) Langmuir. , vol.24 , pp. 245-251
    • Yeh, K.-Y.1    Chen, L.-J.2    Chang, Y.3
  • 28
    • 65249127445 scopus 로고    scopus 로고
    • Single-walled carbon nanotube pillars: A superhydrophobic surface
    • Zhang L, Resasco E. Single-walled carbon nanotube pillars: A superhydrophobic surface. Langmuir. 2009;25:4792-4798.
    • (2009) Langmuir. , vol.25 , pp. 4792-4798
    • Zhang, L.1    Resasco, E.2
  • 29
    • 0037937411 scopus 로고    scopus 로고
    • Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces
    • He B, Patankar NA, Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir. 2003;19:4999-5003.
    • (2003) Langmuir. , vol.19 , pp. 4999-5003
    • He, B.1    Patankar, N.A.2    Lee, J.3
  • 30
    • 66649112452 scopus 로고    scopus 로고
    • Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface
    • Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng C. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc Natl Acad Sci. 2009;106: 8435-8440.
    • (2009) Proc Natl Acad Sci. , vol.106 , pp. 8435-8440
    • Koishi, T.1    Yasuoka, K.2    Fujikawa, S.3    Ebisuzaki, T.4    Zeng, C.5
  • 31
    • 0041764362 scopus 로고    scopus 로고
    • Superhydrophobic states
    • Lafuma A, Quere D. Superhydrophobic states. Nat Mater. 2003;2:457-460.
    • (2003) Nat Mater. , vol.2 , pp. 457-460
    • Lafuma, A.1    Quere, D.2
  • 32
    • 78649962484 scopus 로고    scopus 로고
    • Electrowetting on a dielectric surface roughened with zinc oxide tetrapod nanocrystals
    • Xia J, Wu J. Electrowetting on a dielectric surface roughened with zinc oxide tetrapod nanocrystals. Physica E. 2010;43:81-84.
    • (2010) Physica E. , vol.43 , pp. 81-84
    • Xia, J.1    Wu, J.2
  • 33
    • 78651334039 scopus 로고    scopus 로고
    • Electrical switching of wetting states on superhydrophobic surfaces: A route towards reversible Cassie-To-Wenzel transitions
    • Manukyan G, Oh JM, Ende DV, Lammertink RGH, Mugele F. Electrical switching of wetting states on superhydrophobic surfaces: A route towards reversible Cassie-To-Wenzel transitions. Phys Rev Lett. 2011;106:014501.
    • (2011) Phys Rev Lett. , vol.106 , pp. 014501
    • Manukyan, G.1    Oh, J.M.2    Ende, D.V.3    Lammertink, R.G.H.4    Mugele, F.5
  • 34
    • 34250648492 scopus 로고    scopus 로고
    • Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?
    • Bormashenko E, Pogreb R, Whyman G, Erlich M. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?. Langmuir. 2007;23:6501-6503.
    • (2007) Langmuir. , vol.23 , pp. 6501-6503
    • Bormashenko, E.1    Pogreb, R.2    Whyman, G.3    Erlich, M.4
  • 35
    • 79952605985 scopus 로고    scopus 로고
    • Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets
    • Jonas A, Karadag Y, Tasaltin N, Kucukkara I, Kiraz A. Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets. Langmuir. 2011;27: 2150-2154.
    • (2011) Langmuir. , vol.27 , pp. 2150-2154
    • Jonas, A.1    Karadag, Y.2    Tasaltin, N.3    Kucukkara, I.4    Kiraz, A.5
  • 36
    • 79952613156 scopus 로고    scopus 로고
    • Water droplet motion control on superhydrophobic surfaces: Exploiting the Wenzel-To-Cassie transition
    • Liu G, Fu L, Rode AV, Craig SJ. Water droplet motion control on superhydrophobic surfaces: Exploiting the Wenzel-To-Cassie transition. Langmuir. 2011;27:2595-2600.
    • (2011) Langmuir. , vol.27 , pp. 2595-2600
    • Liu, G.1    Fu, L.2    Rode, A.V.3    Craig, S.J.4
  • 38
    • 43949096521 scopus 로고    scopus 로고
    • Wetting transitions on textured hydrophilic surfaces
    • Ishino C, Okumura K. Wetting transitions on textured hydrophilic surfaces. Eur Phys J E. 2008;25:415-424.
    • (2008) Eur Phys J E. , vol.25 , pp. 415-424
    • Ishino, C.1    Okumura, K.2
  • 39
    • 79959282327 scopus 로고    scopus 로고
    • Wetting and dewetting transitions on hierarchical superhydrophobic surfaces
    • Boreyko JB, Baker CH, Poley CR, Chen H. Wetting and dewetting transitions on hierarchical superhydrophobic surfaces. Langmuir. 2011;27:7502-7509.
    • (2011) Langmuir. , vol.27 , pp. 7502-7509
    • Boreyko, J.B.1    Baker, C.H.2    Poley, C.R.3    Chen, H.4
  • 40
    • 81155124950 scopus 로고    scopus 로고
    • Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces
    • Kumar V, Sridhar S, Errington R. Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces. J Chem Phys. 2011;135:184702.
    • (2011) J Chem Phys , vol.135 , pp. 184702
    • Kumar, V.1    Sridhar, S.2    Errington, R.3
  • 41
    • 40449136154 scopus 로고    scopus 로고
    • Patterned nonadhesive surfaces: Superhydrophobicity and wetting regime transitions
    • Nosonovsky M, Bhushan B. Patterned nonadhesive surfaces: Superhydrophobicity and wetting regime transitions. Langmuir. 2008;24:1525-1533.
    • (2008) Langmuir. , vol.24 , pp. 1525-1533
    • Nosonovsky, M.1    Bhushan, B.2
  • 42
    • 77952890516 scopus 로고    scopus 로고
    • On the possibility of superhydrophobic behavior for hydrophilic materials
    • Cui XS, Li W. On the possibility of superhydrophobic behavior for hydrophilic materials. J Colloid Interface Sci. 2010;347:156-162.
    • (2010) J Colloid Interface Sci. , vol.347 , pp. 156-162
    • Cui, X.S.1    Li, W.2
  • 43
    • 77953090489 scopus 로고    scopus 로고
    • Small droplets on superhydrophobic substrates
    • Gross M, Varnik F, Raabe D, Steinbach I. Small droplets on superhydrophobic substrates. Phys Rev E. 2010;81:051606.
    • (2010) Phys Rev e , vol.81 , pp. 051606
    • Gross, M.1    Varnik, F.2    Raabe, D.3    Steinbach, I.4
  • 44
    • 79958127370 scopus 로고    scopus 로고
    • Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces
    • Liu HH, Zhang HY, Li W. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces. Langmuir. 2011;27:6260-6267.
    • (2011) Langmuir. , vol.27 , pp. 6260-6267
    • Liu, H.H.1    Zhang, H.Y.2    Li, W.3
  • 45
    • 78651337712 scopus 로고    scopus 로고
    • Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale
    • Leroy F, Muller-Plathe F. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Langmuir. 2011;27:637-645.
    • (2011) Langmuir. , vol.27 , pp. 637-645
    • Leroy, F.1    Muller-Plathe, F.2
  • 46
    • 84869387356 scopus 로고    scopus 로고
    • Simulation study of free-energy barriers in the wetting transition of an oily fluid on a rough surface with reentrant geometry
    • Savoy ES, Escobedo A. Simulation study of free-energy barriers in the wetting transition of an oily fluid on a rough surface with reentrant geometry. Langmuir. 2012;28:16080-16090.
    • (2012) Langmuir. , vol.28 , pp. 16080-16090
    • Savoy, E.S.1    Escobedo, A.2
  • 47
    • 84864361970 scopus 로고    scopus 로고
    • Cassie-Baxter and Wenzel states on a nanostructured surface: Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations
    • Giacomello A, Meloni S, Chinappi M, Casciola M. Cassie-Baxter and Wenzel states on a nanostructured surface: Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir. 2012;28:10764-10772.
    • (2012) Langmuir. , vol.28 , pp. 10764-10772
    • Giacomello, A.1    Meloni, S.2    Chinappi, M.3    Casciola, M.4
  • 48
    • 84867366934 scopus 로고    scopus 로고
    • Can continuum thermodynamics characterize Wenzel wetting states of water at the nanometer scale
    • Leroy F, Mueller-Plathe F. Can continuum thermodynamics characterize Wenzel wetting states of water at the nanometer scale. J Chem Theory Comput. 2012;8:3724-3732.
    • (2012) J Chem Theory Comput. , vol.8 , pp. 3724-3732
    • Leroy, F.1    Mueller-Plathe, F.2
  • 49
    • 66249118007 scopus 로고    scopus 로고
    • Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration
    • Leroy F, Santos DJV, Muller-Plathe F. Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration. Macromol Rapid Commun. 2009;30:864-870.
    • (2009) Macromol Rapid Commun. , vol.30 , pp. 864-870
    • Leroy, F.1    Santos, D.J.V.2    Muller-Plathe, F.3
  • 50
    • 33646870309 scopus 로고    scopus 로고
    • DL-POLY-3: New dimensions in molecular dynamics simulations via massive parallelism
    • Todorov IT, Smith W, TK, Dove MT. DL-POLY-3: New dimensions in molecular dynamics simulations via massive parallelism. J Mat Chem. 2006;16:1911-1918.
    • (2006) J Mat Chem. , vol.16 , pp. 1911-1918
    • Todorov, I.T.1    Smith, W.T.K.2    Dove, M.T.3
  • 52
    • 84986440341 scopus 로고    scopus 로고
    • Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
    • Miyamoto S, Kollman A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comp Chem. 2004;13:952-962.
    • (2004) J Comp Chem. , vol.13 , pp. 952-962
    • Miyamoto, S.1    Kollman, A.2
  • 53
    • 0037434746 scopus 로고    scopus 로고
    • On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
    • Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B. 2003;107:1345-1352.
    • (2003) J Phys Chem B. , vol.107 , pp. 1345-1352
    • Werder, T.1    Walther, J.H.2    Jaffe, R.L.3    Halicioglu, T.4    Koumoutsakos, P.5
  • 54
    • 33846823909 scopus 로고
    • Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems
    • Darden T, York D, Pedersen L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J Chem Phys. 1993;98 :10089-10092.
    • (1993) J Chem Phys. , vol.98 , pp. 10089-10092
    • Darden, T.1    York, D.2    Pedersen, L.3
  • 55
    • 61549121675 scopus 로고    scopus 로고
    • Temperature-dependent wettability on a titanium dioxide surface
    • Park JH, Aluru R. Temperature-dependent wettability on a titanium dioxide surface. Mol Simul. 2009;35:31.
    • (2009) Mol Simul , vol.35 , pp. 31
    • Park, J.H.1    Aluru, R.2
  • 56
    • 0033344822 scopus 로고    scopus 로고
    • Dynamic wetting studied by molecular modeling simulations of droplet spreading
    • Ruijter MJd, Blake TD, Coninck JD. Dynamic wetting studied by molecular modeling simulations of droplet spreading. Langmuir. 1999;15:7836-7847.
    • (1999) Langmuir. , vol.15 , pp. 7836-7847
    • Ruijter, M.J.D.1    Blake, T.D.2    Coninck, J.D.3
  • 57
    • 33846457335 scopus 로고    scopus 로고
    • Effect of surface wettablility on liquid density, structure, and diffusion near a solid surface
    • Thomas JA, McGaughey JH. Effect of surface wettablility on liquid density, structure, and diffusion near a solid surface. J Chem Phys. 2007;126:034707.
    • (2007) J Chem Phys , vol.126 , pp. 034707
    • Thomas, J.A.1    McGaughey, J.H.2
  • 58
    • 78049520541 scopus 로고    scopus 로고
    • Wetting transition characteristics on microstructured hydrophobic surfaces
    • Lee JB, Gwon HR, Lee SH, Cho M. Wetting transition characteristics on microstructured hydrophobic surfaces. Mater Trans. 2010;51:1709-1711.
    • (2010) Mater Trans. , vol.51 , pp. 1709-1711
    • Lee, J.B.1    Gwon, H.R.2    Lee, S.H.3    Cho, M.4
  • 59
    • 66549085470 scopus 로고    scopus 로고
    • Nanoscale wetting on groove-patterned surfaces
    • Yong X, Zhang T. Nanoscale wetting on groove-patterned surfaces. Langmuir. 2009;25:5045-5053.
    • (2009) Langmuir. , vol.25 , pp. 5045-5053
    • Yong, X.1    Zhang, T.2
  • 60
    • 0037162575 scopus 로고    scopus 로고
    • Effects of surface structure on the hydrophobicity and sliding behavior of water droplets
    • Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir. 2002;18:5818-5822.
    • (2002) Langmuir. , vol.18 , pp. 5818-5822
    • Yoshimitsu, Z.1    Nakajima, A.2    Watanabe, T.3    Hashimoto, K.4
  • 61
    • 8644227677 scopus 로고    scopus 로고
    • Wetting transitions on rough surfaces
    • Ishino C, Okumura K, Quere D. Wetting transitions on rough surfaces. Europhys Lett. 2004;68:419-425.
    • (2004) Europhys Lett. , vol.68 , pp. 419-425
    • Ishino, C.1    Okumura, K.2    Quere, D.3
  • 62
    • 84859141606 scopus 로고    scopus 로고
    • Dynamic behavior of water droplets on solid surfaces with pillar-Type nanostructures
    • Jeong W-J, Ha MY, Yoon HS, Ambrosia M. Dynamic behavior of water droplets on solid surfaces with pillar-Type nanostructures. Langmuir. 2012;28:5360-5371.
    • (2012) Langmuir. , vol.28 , pp. 5360-5371
    • Jeong, W.-J.1    Ha, M.Y.2    Yoon, H.S.3    Ambrosia, M.4
  • 63
    • 74049101185 scopus 로고    scopus 로고
    • Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces
    • Erbil HY, Cansoy E. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Langmuir. 2009;25:14135-14145.
    • (2009) Langmuir. , vol.25 , pp. 14135-14145
    • Erbil, H.Y.1    Cansoy, E.2
  • 64
    • 0001255625 scopus 로고
    • Contact angle hysteresis II. Contact Angle measurements on rough surfaces
    • Dettre RH, Johnson RE. Contact Angle Hysteresis II. Contact Angle measurements on rough surfaces. Adv Chem. 1963;43:136-144.
    • (1963) Adv Chem. , vol.43 , pp. 136-144
    • Dettre, R.H.1    Johnson, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.