-
1
-
-
0033616808
-
-
Sposito, G.; Skipper, N. T.; Sutton, R.; Park, S.-H.; Soper, A. K.; Greathoouse, J. A. Proc. Natl. Acad. Sci. 1999, 96, 3358.
-
(1999)
Proc. Natl. Acad. Sci
, vol.96
, pp. 3358
-
-
Sposito, G.1
Skipper, N.T.2
Sutton, R.3
Park, S.-H.4
Soper, A.K.5
Greathoouse, J.A.6
-
6
-
-
26944481188
-
-
Chandler, D. Nature 2005, 437, 640.
-
(2005)
Nature
, vol.437
, pp. 640
-
-
Chandler, D.1
-
7
-
-
33747587444
-
-
Lab on a Chip (special issue); Nature 2006, 442, 367-418.
-
"Lab on a Chip" (special issue); Nature 2006, 442, 367-418.
-
-
-
-
10
-
-
4043104154
-
-
Inc, New York
-
de Gennes, P.-G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer Science + Business Media, Inc.: New York, 2004.
-
(2004)
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer Science + Business Media
-
-
de Gennes, P.-G.1
Brochard-Wyart, F.2
Quéré, D.3
-
11
-
-
0033546488
-
-
Bico, J.; Marzolin, C.; Quéré, D. Europhys. Lett. 1999, 47, 220.
-
(1999)
Europhys. Lett
, vol.47
, pp. 220
-
-
Bico, J.1
Marzolin, C.2
Quéré, D.3
-
13
-
-
33748677499
-
-
Yang, C.; Tartaglino, U.; Persson, B. N. J. Phys. Rev. Lett. 2006, 97, 116103.
-
(2006)
Phys. Rev. Lett
, vol.97
, pp. 116103
-
-
Yang, C.1
Tartaglino, U.2
Persson, B.N.J.3
-
14
-
-
33746237612
-
-
Meng, S.; Zhang, Z.; Kaxiras, E. Phys. Rev. Lett. 2006, 97, 036107.
-
(2006)
Phys. Rev. Lett
, vol.97
, pp. 036107
-
-
Meng, S.1
Zhang, Z.2
Kaxiras, E.3
-
15
-
-
0037169067
-
-
Zhang, X.; Zhu, Y.; Granick, S. Science 2002, 295, 663.
-
(2002)
Science
, vol.295
, pp. 663
-
-
Zhang, X.1
Zhu, Y.2
Granick, S.3
-
16
-
-
33646432751
-
-
Ge, Z.; Cahill, D. C.; Braun, P. V. Phys. Rev. Lett. 2006, 96, 186101.
-
(2006)
Phys. Rev. Lett
, vol.96
, pp. 186101
-
-
Ge, Z.1
Cahill, D.C.2
Braun, P.V.3
-
17
-
-
33645820084
-
-
Koishi, T.; Yasuoka, K.; Ebisuzaki, T.; Yoo, S.; Cheng. X. C. J. Chem. Phys. 2005, 123, 204707.
-
(2005)
J. Chem. Phys
, vol.123
, pp. 204707
-
-
Koishi, T.1
Yasuoka, K.2
Ebisuzaki, T.3
Yoo, S.4
Cheng, X.C.5
-
18
-
-
33847230717
-
-
Giovambattista, N.; Debenedetti, P. G.; Rossky, P. J. J. Phys. Chem. C 2007, 111, 1323.
-
(2007)
J. Phys. Chem. C
, Issue.111
, pp. 1323
-
-
Giovambattista, N.1
Debenedetti, P.G.2
Rossky, P.J.3
-
22
-
-
0011960339
-
-
Lum, K.; Chandler, D.; Weeks, J. D. J. Phys. Chem. B 1999, 103, 4570.
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 4570
-
-
Lum, K.1
Chandler, D.2
Weeks, J.D.3
-
24
-
-
0034836138
-
-
Truskett, T. M.; Debenedetti, P. G.; Torquato, S. J. Chem. Phys. 2001, 114, 2401.
-
(2001)
J. Chem. Phys
, vol.114
, pp. 2401
-
-
Truskett, T.M.1
Debenedetti, P.G.2
Torquato, S.3
-
26
-
-
20844462054
-
-
Koishi, T.; Yoo, S.; Yasuoka, K.; Zeng, X. C.; Narumi, T.; Susukita, R.; Kawai, A.; Furusawa, H.; Suenaga, A.; Okimoto, N.; Futatsugi, N.; Ebisuzakil, T. Phys. Rev. Lett. 2004, 93, 185701.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 185701
-
-
Koishi, T.1
Yoo, S.2
Yasuoka, K.3
Zeng, X.C.4
Narumi, T.5
Susukita, R.6
Kawai, A.7
Furusawa, H.8
Suenaga, A.9
Okimoto, N.10
Futatsugi, N.11
Ebisuzakil, T.12
-
28
-
-
0035829539
-
-
Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414, 188.
-
(2001)
Nature
, vol.414
, pp. 188
-
-
Hummer, G.1
Rasaiah, J.C.2
Noworyta, J.P.3
-
29
-
-
33645824972
-
-
Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phys. Rev. E 2006, 73, 041604.
-
(2006)
Phys. Rev. E
, vol.73
, pp. 041604
-
-
Giovambattista, N.1
Rossky, P.J.2
Debenedetti, P.G.3
-
30
-
-
36449005356
-
-
Bérard, D. R.; Attard, P.; Patey, G. N. J. Chem. Phys. 1993, 98, 7236.
-
(1993)
J. Chem. Phys
, vol.98
, pp. 7236
-
-
Bérard, D.R.1
Attard, P.2
Patey, G.N.3
-
32
-
-
33746685028
-
-
Singh, S.; Houston, J.; van Swol, F.; Brinker. C. J. Nature 2006, 442, 526.
-
(2006)
Nature
, vol.442
, pp. 526
-
-
Singh, S.1
Houston, J.2
van Swol, F.3
Brinker, C.J.4
-
34
-
-
0022424655
-
-
Pashley, R. M.; McGuiggan, P. M.; Ninham, B. W.; Evans, F. D. Science 1985, 229, 1088.
-
(1985)
Science
, vol.229
, pp. 1088
-
-
Pashley, R.M.1
McGuiggan, P.M.2
Ninham, B.W.3
Evans, F.D.4
-
35
-
-
0000207233
-
-
Parker, J. L.; Claesson, P. M.; Attard, P. J. Phys. Chem. 1994, 98, 8468.
-
(1994)
J. Phys. Chem
, vol.98
, pp. 8468
-
-
Parker, J.L.1
Claesson, P.M.2
Attard, P.3
-
36
-
-
84930069181
-
-
Jensen, T. R.; Jensen, M. O.; Reitzel, N.; Balashev, K.; Peters, G. H.; Kjaer, K.; Bjornholm, T. Phys. Rev. Lett. 2003, 90, 086101.
-
(2003)
Phys. Rev. Lett
, vol.90
, pp. 086101
-
-
Jensen, T.R.1
Jensen, M.O.2
Reitzel, N.3
Balashev, K.4
Peters, G.H.5
Kjaer, K.6
Bjornholm, T.7
-
40
-
-
0030854750
-
-
Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 431.
-
(1997)
Nature
, vol.388
, pp. 431
-
-
Wang, R.1
Hashimoto, K.2
Fujishima, A.3
Chikuni, M.4
Kojima, E.5
Kitamura, A.6
Shimohigoshi, M.7
Watanabe, T.8
-
41
-
-
27844591666
-
-
Mattioli-Belmonte, M.; Biagini, G.; Lucarini, G.; Virgili, L.; Gabbanelli, F.; Amati, S.; Cecchet, F.; Albertsson, A.-C.; Finne, A.; Andronova, N. J. Bioact. Compat. Polym. 2005, 20, 509.
-
(2005)
J. Bioact. Compat. Polym
, vol.20
, pp. 509
-
-
Mattioli-Belmonte, M.1
Biagini, G.2
Lucarini, G.3
Virgili, L.4
Gabbanelli, F.5
Amati, S.6
Cecchet, F.7
Albertsson, A.-C.8
Finne, A.9
Andronova, N.10
-
42
-
-
1242346370
-
-
Berendsen, H. J. C.; Grigera, J. R.; Stroatsma, T. P. J. Phys. Chem. 1987, 91, 6269.
-
(1987)
J. Phys. Chem
, vol.91
, pp. 6269
-
-
Berendsen, H.J.C.1
Grigera, J.R.2
Stroatsma, T.P.3
-
43
-
-
0030163950
-
-
Toukmaji, A. Y.; Board, J. A., Jr. Comp. Phys. Commun. 1996, 95, 73.
-
Toukmaji, A. Y.; Board, J. A., Jr. Comp. Phys. Commun. 1996, 95, 73.
-
-
-
-
48
-
-
34548210748
-
-
See also http://cst-www.nrl.navy.mil/lattice/struk/c9.html accessed
-
See also http://cst-www.nrl.navy.mil/lattice/struk/c9.html (accessed July 2007).
-
(2007)
-
-
July1
-
49
-
-
36549099780
-
-
Lee, C. Y.; McCammon, J. A.; Rossky, P. J. J. Chem. Phys. 1984, 80, 4448.
-
(1984)
J. Chem. Phys
, vol.80
, pp. 4448
-
-
Lee, C.Y.1
McCammon, J.A.2
Rossky, P.J.3
-
50
-
-
84906370845
-
-
29 With these dimensions, it is not possible to design a silica surface that is (i) square and (ii) periodic along x and y axis. To solve this problem for the simulations in Section HB, we stretched the tetrahedra along the y-axis so that Δy = 0.2166 nm. Such a small stretching does not alter any of the results of refs 18 and 29.
-
29 With these dimensions, it is not possible to design a silica surface that is (i) square and (ii) periodic along x and y axis. To solve this problem for the simulations in Section HB, we stretched the tetrahedra along the y-axis so that Δy = 0.2166 nm. Such a small stretching does not alter any of the results of refs 18 and 29.
-
-
-
-
51
-
-
84906370846
-
-
3, T = 300 K using periodic boundary conditions along the three directions. To calculate the water contact angle, we place the cubic liquid configuration next to the wall at a distance 0.3 nm from the surface (the distance between neighbor oxygen atoms in liquid water at normal conditions is 0.27 nm).
-
3, T = 300 K) using periodic boundary conditions along the three directions. To calculate the water contact angle, we place the cubic liquid configuration next to the wall at a distance 0.3 nm from the surface (the distance between neighbor oxygen atoms in liquid water at normal conditions is 0.27 nm).
-
-
-
-
52
-
-
0037434746
-
-
Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P. J. Phys. Chem. B 2003, 107, 1345.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 1345
-
-
Werder, T.1
Walther, J.H.2
Jaffe, R.L.3
Halicioglu, T.4
Koumoutsakos, P.5
-
53
-
-
0033344822
-
-
de Ruijter, M. J.; Blake, T. D.; De Coninck, J. Langmuir 1999, 15, 7836.
-
(1999)
Langmuir
, vol.15
, pp. 7836
-
-
de Ruijter, M.J.1
Blake, T.D.2
De Coninck, J.3
-
54
-
-
23144435712
-
-
Li, J.; Liu, T.; Li, X.; Ye, L.; Chen, H.; Fang, H.; Wu, Z.; Zhou, R. J. Phys. Chem. B 2005, 109, 13639.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 13639
-
-
Li, J.1
Liu, T.2
Li, X.3
Ye, L.4
Chen, H.5
Fang, H.6
Wu, Z.7
Zhou, R.8
-
55
-
-
33749167249
-
-
Li, X.; Li, J.; Eleftheriou, M.; Zhou, R. J. Am. Chem. Soc. 2006, 128, 12439.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 12439
-
-
Li, X.1
Li, J.2
Eleftheriou, M.3
Zhou, R.4
-
56
-
-
84906385188
-
-
It has been shown that for apolar surfaces, where only Lennard-Jones (LJ) interactions exist between water molecules and surface atoms, the corresponding contact angle depends on the LJ interaction parameters, o and e. Depending on the values of these parameters, an apolar surface can also be hydrophilic51 for instance, a large value of ε will cause water molecules to wet the surface, the contact angle being <90°, Other surface properties, such as the surface structure and roughness, can also contribute to hydrophilicity.13 Our results are based on a full-atom silica surface model that, in the absence of electric charges, results in a hydrophobic surface. This surface model allows us to study the effect of surface polarity independently of the effect of the LJ water-surface interaction parameters and surface structure and roughness
-
13 Our results are based on a full-atom silica surface model that, in the absence of electric charges, results in a hydrophobic surface. This surface model allows us to study the effect of surface polarity independently of the effect of the LJ water-surface interaction parameters and surface structure and roughness.
-
-
-
-
57
-
-
84906399702
-
-
For the cases k, 0.8 and k, 1.0, we find that for a wall with L, 13.86 nm, the droplets cover the whole wall area after 500 ps, and periodic boundary conditions affect the results. The results shown in Figures 2 and 3 for k, 0.8,1.0 are obtained using a larger wall with L, 27.72 nm. Because H atoms on the surface are mobile, such simulations are slow, and we could perform runs up to t, 350 ps. At the end of these simulations, we still observe an evolution of the drop profile. Longer simulations are needed to obtain the final drop profiles for k, 0.8, 1.0. The contact angle and drop contact radius values shown in Figure 3 for k > 0.8 should be considered as upper and lower values, respectively, of the real contact angle and drop contact radius. We stress that our results and conclusions do not depend on the precise value of these properties at k > 0.8. For k < 0.6, we have verified that the system has
-
For the cases k = 0.8 and k = 1.0, we find that for a wall with L = 13.86 nm, the droplets cover the whole wall area after 500 ps, and periodic boundary conditions affect the results. The results shown in Figures 2 and 3 for k = 0.8,1.0 are obtained using a larger wall with L = 27.72 nm. Because H atoms on the surface are mobile, such simulations are slow, and we could perform runs up to t = 350 ps. At the end of these simulations, we still observe an evolution of the drop profile. Longer simulations are needed to obtain the final drop profiles for k = 0.8, 1.0. The contact angle and drop contact radius values shown in Figure 3 for k > 0.8 should be considered as upper and lower values, respectively, of the real contact angle and drop contact radius. We stress that our results and conclusions do not depend on the precise value of these properties at k > 0.8. For k < 0.6, we have verified that the system has reached equilibrium by comparing the contact angles obtained in the 200-350 and 350-500 ps time intervals. We obtain the same value of contact angle independently of the time interval chosen.
-
-
-
-
58
-
-
84906414094
-
-
This is a molecular level definition of contact angle, analogous to the corresponding macroscopic definition. No assumptions on the drop profile are made here e.g, if one assumes that macroscopic thermodynamics holds in the present nanoscale system, then one could fit the drop profile by a circle, We also note that the values of contact angles measured in a nanoscale system can differ from those measured in the corresponding macroscopic system.51
-
51
-
-
-
-
59
-
-
84906385187
-
-
The HB vectors are defined as the four tetrahedral vectors pointing outward from the oxygen atom of each water molecule along the two oxygen-hydrogen bond donor and the correponding two lone pair electron acceptor directions
-
The HB vectors are defined as the four tetrahedral vectors pointing outward from the oxygen atom of each water molecule along the two oxygen-hydrogen bond donor and the correponding two "lone pair electron" acceptor directions.
-
-
-
-
62
-
-
4243831461
-
-
Du, Q.; Superfine, R.; Freysz, E.; Shen, Y. R. Phys. Rev. Lett. 1993, 70, 2313.
-
(1993)
Phys. Rev. Lett
, vol.70
, pp. 2313
-
-
Du, Q.1
Superfine, R.2
Freysz, E.3
Shen, Y.R.4
-
63
-
-
33846389775
-
-
Poynor, A.; Hong, L.; Robinson, I. K.; Granick, S.; Zhang, Z.; Fenter, P. A. Phys. Rev. Lett. 2006, 97, 266101.
-
(2006)
Phys. Rev. Lett
, vol.97
, pp. 266101
-
-
Poynor, A.1
Hong, L.2
Robinson, I.K.3
Granick, S.4
Zhang, Z.5
Fenter, P.A.6
|