메뉴 건너뛰기




Volumn 44, Issue 3, 2013, Pages 359-364

A molecular-based model for prediction of liquid viscosity of pure organic compounds: A quantitative structure property relationship (QSPR) approach

Author keywords

Feed forward neural networks; Genetic algorithms; Quantitative structure viscosity relationship; Subset variable selection

Indexed keywords

ERROR OF THE MODELS; MOLECULAR DESCRIPTORS; MULTIVARIATE LINEAR REGRESSIONS; PREDICTIVE CAPABILITIES; PREDICTIVE MODELING; QUANTITATIVE STRUCTURE PROPERTY RELATIONSHIPS; QUANTITATIVE STRUCTURE-VISCOSITY RELATIONSHIP; SUBSET VARIABLE SELECTION;

EID: 84892487812     PISSN: 18761070     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jtice.2012.12.015     Document Type: Article
Times cited : (8)

References (35)
  • 2
    • 0000540098 scopus 로고    scopus 로고
    • Development of quantitative structure-property relationships using calculated descriptors for the prediction of the physicochemical properties (nD, ρ, bp, e{open}, η) of a series of organic solvents
    • Cocchi M., De Benedetti P.G., Seeber R., Tassi L., Ulrici A. Development of quantitative structure-property relationships using calculated descriptors for the prediction of the physicochemical properties (nD, ρ, bp, e{open}, η) of a series of organic solvents. J Chem Inf Model 1999, 39:1190-1203.
    • (1999) J Chem Inf Model , vol.39 , pp. 1190-1203
    • Cocchi, M.1    De Benedetti, P.G.2    Seeber, R.3    Tassi, L.4    Ulrici, A.5
  • 3
    • 0000850395 scopus 로고    scopus 로고
    • Estimation of the liquid viscosity of organic compounds with a quantitative structure-property model
    • Ivanciuc O., Ivanciuc T., Filip P.A., Cabrol-Bass D. Estimation of the liquid viscosity of organic compounds with a quantitative structure-property model. J Chem Inf Model 1999, 39:515-524.
    • (1999) J Chem Inf Model , vol.39 , pp. 515-524
    • Ivanciuc, O.1    Ivanciuc, T.2    Filip, P.A.3    Cabrol-Bass, D.4
  • 4
    • 0003046499 scopus 로고    scopus 로고
    • Prediction of liquid viscosity for organic compounds by a quantitative structure-property relationship
    • Katritzky A.R., Chen K., Wang Y., Karelson M., Lucic B., Trinajstic N., et al. Prediction of liquid viscosity for organic compounds by a quantitative structure-property relationship. J Phys Org Chem 2000, 13:80-86.
    • (2000) J Phys Org Chem , vol.13 , pp. 80-86
    • Katritzky, A.R.1    Chen, K.2    Wang, Y.3    Karelson, M.4    Lucic, B.5    Trinajstic, N.6
  • 5
    • 0035272647 scopus 로고    scopus 로고
    • Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-property relationships
    • Kauffman G.W., Jurs P.C. Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-property relationships. J Chem Inf Model 2001, 41:408-418.
    • (2001) J Chem Inf Model , vol.41 , pp. 408-418
    • Kauffman, G.W.1    Jurs, P.C.2
  • 6
    • 0029230341 scopus 로고
    • Automated descriptor selection for quantitative structure-activity relationships using generalized simulated annealing
    • Sutter J.M., Dixon S.L., Jurs P.C. Automated descriptor selection for quantitative structure-activity relationships using generalized simulated annealing. J Chem Inf Model 1995, 35:77-84.
    • (1995) J Chem Inf Model , vol.35 , pp. 77-84
    • Sutter, J.M.1    Dixon, S.L.2    Jurs, P.C.3
  • 7
    • 71649086733 scopus 로고    scopus 로고
    • Quantitative structure-property relationship (QSPR) prediction of liquid viscosities of pure organic compounds employing random forest regression
    • Rajappan R., Shingade P.D., Natarajan R., Jayaraman V.K. Quantitative structure-property relationship (QSPR) prediction of liquid viscosities of pure organic compounds employing random forest regression. Ind Eng Chem Res 2009, 48:9708-9712.
    • (2009) Ind Eng Chem Res , vol.48 , pp. 9708-9712
    • Rajappan, R.1    Shingade, P.D.2    Natarajan, R.3    Jayaraman, V.K.4
  • 8
    • 84892487875 scopus 로고    scopus 로고
    • Resampling methods in R: the boot package
    • Liaw A., Wiener M. Resampling methods in R: the boot package. R News 2002, 2:1-39.
    • (2002) R News , vol.2 , pp. 1-39
    • Liaw, A.1    Wiener, M.2
  • 9
    • 0037190261 scopus 로고    scopus 로고
    • r<0.75) for organic liquids from group contributions
    • r<0.75) for organic liquids from group contributions. Chem Eng J 2002, 88:27-35.
    • (2002) Chem Eng J , vol.88 , pp. 27-35
    • Hsu, H.1
  • 10
    • 0022506046 scopus 로고
    • Viscosity of liquids: an equation with parameters correlating with structural groups
    • Luckas M., Lucas K. Viscosity of liquids: an equation with parameters correlating with structural groups. AlChE J 1986, 32:139-141.
    • (1986) AlChE J , vol.32 , pp. 139-141
    • Luckas, M.1    Lucas, K.2
  • 11
    • 0034283461 scopus 로고    scopus 로고
    • Estimation of liquid viscosity at ambient temperature of pure organic compounds by using group-interaction contributions
    • Marrero-Morejón J. Estimation of liquid viscosity at ambient temperature of pure organic compounds by using group-interaction contributions. Chem Eng J 2000, 79:69-72.
    • (2000) Chem Eng J , vol.79 , pp. 69-72
    • Marrero-Morejón, J.1
  • 12
    • 11144306418 scopus 로고    scopus 로고
    • Prediction of the liquid viscosities of pure components and mixtures using neural network and asog group contribution methods
    • Murata A., Tochigi K., Yamamoto H. Prediction of the liquid viscosities of pure components and mixtures using neural network and asog group contribution methods. Mol Simul 2004, 30:451-457.
    • (2004) Mol Simul , vol.30 , pp. 451-457
    • Murata, A.1    Tochigi, K.2    Yamamoto, H.3
  • 13
    • 67349180219 scopus 로고    scopus 로고
    • Estimation of pure component properties. Part 4: Estimation of the saturated liquid viscosity of non-electrolyte organic compounds via group contributions and group interactions
    • Nannoolal Y., Rarey J., Ramjugernath D. Estimation of pure component properties. Part 4: Estimation of the saturated liquid viscosity of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilib 2009, 281:97-119.
    • (2009) Fluid Phase Equilib , vol.281 , pp. 97-119
    • Nannoolal, Y.1    Rarey, J.2    Ramjugernath, D.3
  • 14
    • 27844453928 scopus 로고    scopus 로고
    • New group-contribution method for predicting temperature-dependent properties of pure organic compounds
    • Stefanis E., Constantinou L., Tsivintzelis I., Panayiotou C. New group-contribution method for predicting temperature-dependent properties of pure organic compounds. Int J Thermophys 2005, 26:1369-1388.
    • (2005) Int J Thermophys , vol.26 , pp. 1369-1388
    • Stefanis, E.1    Constantinou, L.2    Tsivintzelis, I.3    Panayiotou, C.4
  • 15
    • 0037197246 scopus 로고    scopus 로고
    • Estimation of liquid viscosity of pure compounds at different temperatures by a corresponding-states group-contribution method
    • Yinghua L. Estimation of liquid viscosity of pure compounds at different temperatures by a corresponding-states group-contribution method. Fluid Phase Equilib 2002, 198:123-130.
    • (2002) Fluid Phase Equilib , vol.198 , pp. 123-130
    • Yinghua, L.1
  • 16
    • 0026929047 scopus 로고
    • A new group contribution method for predicting viscosity of organic liquids
    • Sastri S.R.S., Rao K.K. A new group contribution method for predicting viscosity of organic liquids. Chem Eng J 1992, 50:9-25.
    • (1992) Chem Eng J , vol.50 , pp. 9-25
    • Sastri, S.R.S.1    Rao, K.K.2
  • 18
    • 33646380890 scopus 로고    scopus 로고
    • Estimation of the normal boiling point of organic compounds
    • Sanghvi R., Yalkowsky S.H. Estimation of the normal boiling point of organic compounds. Ind Eng Chem Res 2006, 45:2856-2861.
    • (2006) Ind Eng Chem Res , vol.45 , pp. 2856-2861
    • Sanghvi, R.1    Yalkowsky, S.H.2
  • 20
    • 85002377847 scopus 로고
    • Genetic algorithms as a strategy for feature selection
    • Leardi R., Boggia R., Terrile M. Genetic algorithms as a strategy for feature selection. J Chemometr 1992, 6:267-281.
    • (1992) J Chemometr , vol.6 , pp. 267-281
    • Leardi, R.1    Boggia, R.2    Terrile, M.3
  • 21
    • 2942720566 scopus 로고    scopus 로고
    • Detecting bad regression models: multicriteia fitness functions in regression analysis
    • Todeschini R., Consonni, Mauri R., Pavan M. Detecting bad regression models: multicriteia fitness functions in regression analysis. Anal Chim Acta 2004, 515:199-208.
    • (2004) Anal Chim Acta , vol.515 , pp. 199-208
    • Todeschini, R.1    Consonni2    Mauri, R.3    Pavan, M.4
  • 22
    • 34248389661 scopus 로고    scopus 로고
    • QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN
    • Gharagheizi F. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput Mater Sci 2007, 40:159-167.
    • (2007) Comput Mater Sci , vol.40 , pp. 159-167
    • Gharagheizi, F.1
  • 23
    • 79951500952 scopus 로고    scopus 로고
    • Prediction of crystal lattice energy using enthalpy of sublimation: a group contribution-based model
    • Gharagheizi F., Sattari M., Tirandazi B. Prediction of crystal lattice energy using enthalpy of sublimation: a group contribution-based model. Ind Eng Chem Res 2011, 50:2482-2486.
    • (2011) Ind Eng Chem Res , vol.50 , pp. 2482-2486
    • Gharagheizi, F.1    Sattari, M.2    Tirandazi, B.3
  • 24
    • 79955610427 scopus 로고    scopus 로고
    • QSPR approach for determination of parachor of non-electrolyte organic compounds
    • Gharagheizi F., Eslamimanesh A., Mohammadi A.H., Richon D. QSPR approach for determination of parachor of non-electrolyte organic compounds. Chem Eng Sci 2011, 66:2959-2967.
    • (2011) Chem Eng Sci , vol.66 , pp. 2959-2967
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 25
    • 79955878346 scopus 로고    scopus 로고
    • Determination of critical properties and acentric factors of pure compounds using the artificial neural network group contribution algorithm
    • Gharagheizi F., Eslamimanesh A., Mohammadi A.H., Richon D. Determination of critical properties and acentric factors of pure compounds using the artificial neural network group contribution algorithm. J Chem Eng Data 2011, 56:2460-2476.
    • (2011) J Chem Eng Data , vol.56 , pp. 2460-2476
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 26
    • 79955886615 scopus 로고    scopus 로고
    • Use of artificial neural network - group contribution method to determine surface tension of pure compounds
    • Gharagheizi F., Eslamimanesh A., Mohammadi A.H., Richon D. Use of artificial neural network - group contribution method to determine surface tension of pure compounds. J Chem Eng Data 2011, 56:2587-2601.
    • (2011) J Chem Eng Data , vol.56 , pp. 2587-2601
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 27
    • 79954608677 scopus 로고    scopus 로고
    • Representation/prediction of solubilities of pure compounds in water using artificial neural network - group contribution method
    • Gharagheizi F., Eslamimanesh A., Mohammadi A.H., Richon D. Representation/prediction of solubilities of pure compounds in water using artificial neural network - group contribution method. J Chem Eng Data 2011, 56:720-726.
    • (2011) J Chem Eng Data , vol.56 , pp. 720-726
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 29
    • 84862657925 scopus 로고    scopus 로고
    • Prediction of condensate-to-gas ratio for retrograde gas condensate reservoirs using artificial neural network with particle swarm optimization
    • Zendehboudi S., Ahmadi M.A., James L., Chatzis I. Prediction of condensate-to-gas ratio for retrograde gas condensate reservoirs using artificial neural network with particle swarm optimization. Energy Fuels 2012, 26:3432-3447.
    • (2012) Energy Fuels , vol.26 , pp. 3432-3447
    • Zendehboudi, S.1    Ahmadi, M.A.2    James, L.3    Chatzis, I.4
  • 30
    • 84892488335 scopus 로고    scopus 로고
    • Application of equation of state and artificial neural network to prediction of volumetric properties of polymer melts
    • Yousefi F., Karimi H. Application of equation of state and artificial neural network to prediction of volumetric properties of polymer melts. J Ind Eng Chem 2012.
    • (2012) J Ind Eng Chem
    • Yousefi, F.1    Karimi, H.2
  • 31
    • 84865501836 scopus 로고    scopus 로고
    • The prediction of permeability using an artificial neural network system
    • Pazuki G.R., Nikookar M., Dehnavi M., Al-Anazi B. The prediction of permeability using an artificial neural network system. Pet Sci Technol 2012, 30:2108-2113.
    • (2012) Pet Sci Technol , vol.30 , pp. 2108-2113
    • Pazuki, G.R.1    Nikookar, M.2    Dehnavi, M.3    Al-Anazi, B.4
  • 33
    • 78650130863 scopus 로고    scopus 로고
    • Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide
    • Gharagheizi F., Eslamimanesh A., Mohammadi A.H., Richon D. Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide. Ind Eng Chem Res 2011, 50:221-226.
    • (2011) Ind Eng Chem Res , vol.50 , pp. 221-226
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 34
    • 79955637341 scopus 로고    scopus 로고
    • Artificial neural network modeling of solubility of supercritical carbon dioxide in 24 commonly used Ionic liquids
    • Eslamimanesh A., Gharagheizi F., Mohammadi A.H., Richon D. Artificial neural network modeling of solubility of supercritical carbon dioxide in 24 commonly used Ionic liquids. Chem Eng Sci 2011, 66:3039-3044.
    • (2011) Chem Eng Sci , vol.66 , pp. 3039-3044
    • Eslamimanesh, A.1    Gharagheizi, F.2    Mohammadi, A.H.3    Richon, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.