메뉴 건너뛰기




Volumn 30, Issue 20, 2012, Pages 2108-2113

The prediction of permeability using an artificial neural network system

Author keywords

artificial neural network; modeling; permeabililty; reservoir

Indexed keywords

EXPERIMENTAL DATA; KEY PARAMETERS; LEARNING METHODS; MIDDLE LAYER; MULTILAYER PERCEPTRON NEURAL NETWORKS; NEURAL NETWORK MODEL; NODE NUMBER; OFFSHORE RESERVOIRS; PERMEABILILTY; RESERVOIR CHARACTERIZATION; SAUDI ARABIA; THREE-LAYER;

EID: 84865501836     PISSN: 10916466     EISSN: 15322459     Source Type: Journal    
DOI: 10.1080/10916466.2010.512888     Document Type: Article
Times cited : (4)

References (11)
  • 1
    • 1842535995 scopus 로고    scopus 로고
    • Improving the simulation of waterflood performance with the use of neural networks
    • October 17-19, Morgantown, West Virginia
    • Aminian, K., Bilgesu, H. I., Ameri, S., and Gil, E. (2000). Improving the simulation of waterflood performance with the use of neural networks. SPE 65630, SPE Eastern Regional Conference, October 17-19, Morgantown, West Virginia.
    • (2000) SPE 65630, SPE Eastern Regional Conference
    • Aminian, K.1    Bilgesu, H.I.2    Ameri, S.3    Gil, E.4
  • 3
    • 78751543551 scopus 로고    scopus 로고
    • Prediction of compressibility factor of sour and natural gas by an artificial neural network system
    • Al-Anazi, B., Pazuki, G. R., Nikookar,M., and Al-Anazi, A. F. (2011). Prediction of compressibility factor of sour and natural gas by an artificial neural network system. Pet. Sci. Technol. 29:325-336.
    • (2011) Pet. Sci. Technol. , vol.29 , pp. 325-336
    • Al-Anazi, B.1    Pazuki, G.R.2    Nikookar, M.3    Al-Anazi, A.F.4
  • 4
    • 69249146452 scopus 로고    scopus 로고
    • Partial Ph.D. dissertation Trondheim, Norway: Norwegian University of Science and Technology
    • Bhatt, A. (2002). Reservoir properties from well logs using neural networks. Partial Ph.D. dissertation, Trondheim, Norway: Norwegian University of Science and Technology.
    • (2002) Reservoir Properties from Well Logs Using Neural Networks
    • Bhatt, A.1
  • 5
    • 0035881514 scopus 로고    scopus 로고
    • Automatic design of neural network structures
    • DOI 10.1016/S0098-1354(01)00680-9, PII S0098135401006809
    • Boozarjomehry, R. B., and Svrcek, W. Y. (2001). Automatic design of neural network structures. J. Comput. Chem. Eng. 25:1075-1088. (Pubitemid 32772288)
    • (2001) Computers and Chemical Engineering , vol.25 , Issue.7-8 , pp. 1075-1088
    • Boozarjomehry, R.B.1    Svrcek, W.Y.2
  • 7
    • 0028582480 scopus 로고
    • Design and development of an artificial neural network for estimation of formation permeability
    • July 31-August 3, Dallas, Texas
    • Mohaghegh, S., Arefi, R., Ameri, S., and Rose, D. (1994). Design and development of an artificial neural network for estimation of formation permeability. SPE 28237, Petroleum Computer Conference, July 31-August 3, Dallas, Texas.
    • (1994) SPE 28237, Petroleum Computer Conference
    • Mohaghegh, S.1    Arefi, R.2    Ameri, S.3    Rose, D.4
  • 8
    • 0029182593 scopus 로고
    • State-of - The-art in permeability determination from well log data: Part 2-verifiable, accurate permeability predictions, the touch-stone of all models
    • September 17-21, Morgantown, West Virginia
    • Mohaghegh, S., Balan, B., and Ameri, S. (1995). State-of-the-art in permeability determination from well log data: Part 2-verifiable, accurate permeability predictions, the touch-stone of all models. SPE 30979, Eastern Regional Conference and Exhibition, September 17-21, Morgantown, West Virginia.
    • (1995) SPE 30979, Eastern Regional Conference and Exhibition
    • Mohaghegh, S.1    Balan, B.2    Ameri, S.3
  • 9
    • 80053251301 scopus 로고    scopus 로고
    • Prediction of surface tension of pure hydrocarbons by artificial neural network system
    • Pazuki, G. R., Nikookar, M., and Sahranavard, L. (2010). Prediction of surface tension of pure hydrocarbons by artificial neural network system. Pet. Sci. Technol. 29:2384-2396.
    • (2010) Pet. Sci. Technol. , vol.29 , pp. 2384-2396
    • Pazuki, G.R.1    Nikookar, M.2    Sahranavard, L.3
  • 10
    • 0343721947 scopus 로고
    • Predict permeability from wireline logs using neural networks
    • Wiener, J. (1995). Predict permeability from wireline logs using neural networks. Pet. Eng. Int. 68:18-24.
    • (1995) Pet. Eng. Int. , vol.68 , pp. 18-24
    • Wiener, J.1
  • 11
    • 0033839114 scopus 로고    scopus 로고
    • Multiple permeability predictions using an observational learning algorithm
    • DOI 10.1016/S0098-3004(00)00026-1, PII S0098300400000261, Applications of Virtual Intelligence to Petroleum Engineering
    • Wong, P. M., Jang, M., Cho, S., and Gedeon, T. D. (2000). Multiple permeability predictions using an observational learning algorithm. Comput. Geosci. 26:907-913. (Pubitemid 30667209)
    • (2000) Computers and Geosciences , vol.26 , Issue.8 , pp. 907-913
    • Wong, P.M.1    Jang, M.2    Cho, S.3    Gedeon, T.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.