메뉴 건너뛰기




Volumn 11, Issue 1, 2014, Pages 204-214

A multiagent Q-learning-based optimal allocation approach for urban water resource management system

Author keywords

Complex system; Multiagent Q learning; Optimal allocation; Urban water resource management

Indexed keywords

EFFECTIVE APPROACHES; MULTI-AGENT Q-LEARNING; OPTIMAL ALLOCATION; Q-LEARNING ALGORITHMS; RESOURCE OPTIMAL ALLOCATION; URBAN WATER RESOURCES; WATER ENVIRONMENT SYSTEMS; WATERRESOURCE MANAGEMENT;

EID: 84892442931     PISSN: 15455955     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASE.2012.2229978     Document Type: Article
Times cited : (55)

References (40)
  • 1
    • 79957537445 scopus 로고    scopus 로고
    • Fuzzy optimization of water resources project scheme based on improved grey relation analysis
    • Shanghai, China
    • G.-H.Wei, F. Liu, and L. Ma, "Fuzzy optimization of water resources project scheme based on improved grey relation analysis," in Proc. 3rd Int. Conf. Comput. Res. Develop., Shanghai, China, 2011, vol. 4, pp. 333-336.
    • (2011) Proc. 3rd Int. Conf. Comput. Res. Develop. , vol.4 , pp. 333-336
    • Wei, G.-H.1    Liu, F.2    Ma, L.3
  • 2
    • 84857163397 scopus 로고    scopus 로고
    • City optimal allocation of water resources research based on sustainable development
    • W. Sun and Z. Zeng, "City optimal allocation of water resources research based on sustainable development," Adv, Mater. Res., vol. 446-449, pp. 2703-2707, 2012.
    • (2012) Adv, Mater. Res. , vol.446-449 , pp. 2703-2707
    • Sun, W.1    Zeng, Z.2
  • 3
    • 80054962664 scopus 로고    scopus 로고
    • Study of the optimal water resources allocation scenarios in Pingxiang city
    • B. Huang, F. Gui, and X. Zhang, "Study of the optimal water resources allocation scenarios in Pingxiang city," Adv. Intell. Soft Comput., vol. 105, pp. 487-493, 2011.
    • (2011) Adv. Intell. Soft Comput. , vol.105 , pp. 487-493
    • Huang, B.1    Gui, F.2    Zhang, X.3
  • 4
    • 79955530595 scopus 로고    scopus 로고
    • A robust global optimization algorithm of electromagnetic device utilizing gradient index and multi-objective optimization method
    • May
    • Z. Ren, M.-T. Pham, M. Song, D.-H. Kim, and C. S. Koh, "A robust global optimization algorithm of electromagnetic device utilizing gradient index and multi-objective optimization method," IEEE Trans. Magn., vol. 47, no. 5, pp. 1254-1257, May 2011.
    • (2011) IEEE Trans. Magn. , vol.47 , Issue.5 , pp. 1254-1257
    • Ren, Z.1    Pham, M.-T.2    Song, M.3    Kim, D.-H.4    Koh, C.S.5
  • 5
    • 79953026994 scopus 로고    scopus 로고
    • A new manufacturing resource allocation method for supply chain optimization using extended genetic algorithm
    • Apr
    • W. Y. Zhang, S. Zhang, M. Cai, and J. X. Huang, "A new manufacturing resource allocation method for supply chain optimization using extended genetic algorithm," International J. Adv. Manuf. Technol., vol. 53, no. 9-12, pp. 1247-1260, Apr. 2011.
    • (2011) International J. Adv. Manuf. Technol. , vol.53 , Issue.9-12 , pp. 1247-1260
    • Zhang, W.Y.1    Zhang, S.2    Cai, M.3    Huang, J.X.4
  • 6
    • 33846321543 scopus 로고    scopus 로고
    • A resource allocation algorithm for multivehicle systems with nonholonomic constraints
    • DOI 10.1109/TASE.2006.872110
    • S. Rathinam, R. Sengupta, and S. Darbha, "A resource allocation algorithm for multivehicle systems with nonholonomic constraints," IEEE Trans. Autom. Sci. Eng., vol. 4, no. 1, pp. 98-104, Jan. 2007. (Pubitemid 46113505)
    • (2007) IEEE Transactions on Automation Science and Engineering , vol.4 , Issue.1 , pp. 98-104
    • Rathinam, S.1    Sengupta, R.2    Darbha, S.3
  • 8
    • 33847768224 scopus 로고    scopus 로고
    • A reinforcement learning approach to dynamic resource allocation
    • DOI 10.1016/j.engappai.2006.06.019, PII S0952197606001205
    • D. Vengerov, "A reinforcement learning approach to dynamic resource allocation," Eng. Appl. Artif. Intell., vol. 20, no. 3, pp. 383-390, Apr. 2007. (Pubitemid 46389478)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.3 , pp. 383-390
    • Vengerov, D.1
  • 9
    • 77949568581 scopus 로고    scopus 로고
    • Simulation and validation of a reinforcement learning agent-based model for multi-stakeholder forest management
    • C. Bone and S. Dragi?evi?, "Simulation and validation of a reinforcement learning agent-based model for multi-stakeholder forest management," Comput., Environ. Urban Syst., vol. 34, no. 2, pp. 162-174, 2010.
    • (2010) Comput., Environ. Urban Syst. , vol.34 , Issue.2 , pp. 162-174
    • Bone, C.1    Dragievi, S.2
  • 10
    • 23844500157 scopus 로고    scopus 로고
    • Machine learning approach for determining feasible plans of a remanufacturing system
    • DOI 10.1109/TASE.2005.849090
    • C. Song, X. Guan, Q. Zhao, and Y. Ho, "Machine learning approach for determining feasible plans of a remanufacturing system," IEEE Trans. Autom. Sci. Eng., vol. 2, no. 3, pp. 262-275, Jul. 2005. (Pubitemid 41145975)
    • (2005) IEEE Transactions on Automation Science and Engineering , vol.2 , Issue.3 , pp. 262-275
    • Song, C.1    Guan, X.2    Zhao, Q.3    Ho, Y.-C.4
  • 11
    • 79951779451 scopus 로고    scopus 로고
    • Research advances on water resources optimal distribution
    • M. Han, H. Du, X. Yang, and Y. Liu, "Research advances on water resources optimal distribution," Procedia Environ. Sci., vol. 2, pp. 1912-1918, 2010.
    • (2010) Procedia Environ. Sci. , vol.2 , pp. 1912-1918
    • Han, M.1    Du, H.2    Yang, X.3    Liu, Y.4
  • 12
    • 33750953806 scopus 로고    scopus 로고
    • Water allocation improvement in river basin using Adaptive Neural Fuzzy Reinforcement Learning approach
    • DOI 10.1016/j.asoc.2005.02.007, PII S1568494605000682
    • B. Abolpour,M. Javan, and M. Karamouz, "Water allocation improvement in river basin using adaptive neural fuzzy reinforcement learning approach," Appl. Soft Comput., vol. 7, no. 1, pp. 265-285, Jan. 2007. (Pubitemid 44739432)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.1 , pp. 265-285
    • Abolpour, B.1    Javan, M.2    Karamouz, M.3
  • 13
    • 2342512875 scopus 로고    scopus 로고
    • Tabu search algorithms for water network optimization
    • Sept 16
    • M. Cunha and L. Ribeiro, "Tabu search algorithms for water network optimization," Eur. J. Oper. Res., vol. 157, no. 3, pp. 746-758, Sept. 16, 2004.
    • (2004) Eur. J. Oper. Res. , vol.157 , Issue.3 , pp. 746-758
    • Cunha, M.1    Ribeiro, L.2
  • 14
    • 77955710126 scopus 로고    scopus 로고
    • Multiobjective particle swarm optimization applied to water distribution systems design: An approach with human interaction
    • I. Montalvo, J. Izquierdo, S. Schwarze, and R. Perez-Garcia, "Multiobjective particle swarm optimization applied to water distribution systems design: An approach with human interaction," Math. Comput. Modeling, vol. 52, no. 7-8, pp. 1219-1227, 2010.
    • (2010) Math. Comput. Modeling , vol.52 , Issue.7-8 , pp. 1219-1227
    • Montalvo, I.1    Izquierdo, J.2    Schwarze, S.3    Perez-Garcia, R.4
  • 15
    • 79958021201 scopus 로고    scopus 로고
    • Urban water demand modeling: Review of concepts, methods, and organizing principles
    • L. A. House-Peters and H. Chang, "Urban water demand modeling: Review of concepts, methods, and organizing principles," Water Resources Res., vol. 47, no. 5, 2011.
    • (2011) Water Resources Res. , vol.47 , Issue.5
    • House-Peters, L.A.1    Chang, H.2
  • 16
    • 79960411215 scopus 로고    scopus 로고
    • A complex adaptive systems approach to develop basin-scale optimal management strategies for water resources systems
    • Palm Springs, CA, May 16-20
    • L. Kanta and E. M. Zechman, "A complex adaptive systems approach to develop basin-scale optimal management strategies for water resources systems," in Proc. World Environ. Water Resources Congr., Palm Springs, CA, May 16-20, 2011, pp. 2840-2843.
    • (2011) Proc. World Environ. Water Resources Congr. , pp. 2840-2843
    • Kanta, L.1    Zechman, E.M.2
  • 17
    • 84855385527 scopus 로고    scopus 로고
    • Solution method of optimal scheme set for water resources scheduling group decision-making based on multi-agent computation
    • SI
    • C. Li, F. Wang, X. Wei, and Z. Ma, "Solution method of optimal scheme set for water resources scheduling group decision-making based on multi-agent computation," Intell. Autom. Soft Comput., vol. 17, no. 7, pp. 871-883, 2011, SI.
    • (2011) Intell. Autom. Soft Comput. , vol.17 , Issue.7 , pp. 871-883
    • Li, C.1    Wang, F.2    Wei, X.3    Ma, Z.4
  • 18
    • 24044444928 scopus 로고    scopus 로고
    • Large-scale water resources management within the framework of GLOWA-Danube - The water supply model
    • DOI 10.1016/j.pce.2005.06.004, PII S147470650500032X
    • D. Nickel, R. Barthel, and J. Braun, "Large-scale water resources management within the framework of GLOWA-Danube-The water supply model," Phys. Chem. Earth, vol. 30, no. 6-7, pp. 383-388, 2005, SPEC. ISS.. (Pubitemid 41213642)
    • (2005) Physics and Chemistry of the Earth , vol.30 , Issue.6-7 SPEC. ISSUE , pp. 383-388
    • Nickel, D.1    Barthel, R.2    Braun, J.3
  • 19
    • 84863213317 scopus 로고    scopus 로고
    • Reinforcement learning based multiagent cooperation for water price forecasting decision support system
    • May
    • J. Ni,M. Liu, J. Fei, and H. Ma, "Reinforcement learning based multiagent cooperation for water price forecasting decision support system," Information-An International Interdisciplinary J., vol. 15, no. 5, pp. 1889-1899, May 2012.
    • (2012) Information-An International Interdisciplinary J. , vol.15 , Issue.5 , pp. 1889-1899
    • Ni, J.1    Liu, M.2    Fei, J.3    Ma, H.4
  • 21
    • 27844586782 scopus 로고    scopus 로고
    • Concurrent Q-learning: Reinforcement learning for dynamic goals and environments
    • Oct
    • R. Ollington and P. Vamplew, "Concurrent Q-learning: Reinforcement learning for dynamic goals and environments," Int. J. Intell. Syst., vol. 20, no. 10, Oct. 2005.
    • (2005) Int. J. Intell. Syst. , vol.20 , Issue.10
    • Ollington, R.1    Vamplew, P.2
  • 22
    • 73849115394 scopus 로고    scopus 로고
    • Physical modeling of a bag knot in a robot learning system
    • U. Kartoun, A. Shapiro, H. Stern, and Y. Edan, "Physical modeling of a bag knot in a robot learning system," IEEE Trans. Autom. Sci. Eng., vol. 7, no. 1, pp. 172-177, 2010.
    • (2010) IEEE Trans. Autom. Sci. Eng. , vol.7 , Issue.1 , pp. 172-177
    • Kartoun, U.1    Shapiro, A.2    Stern, H.3    Edan, Y.4
  • 23
    • 65649092655 scopus 로고    scopus 로고
    • Ant colony optimization incorporated with fuzzy Q-learning for reinforcement fuzzy control
    • C.-F. Juang and C.-M. Lu, "Ant colony optimization incorporated with fuzzy Q-learning for reinforcement fuzzy control," IEEE Tran. Syst., Man, Cybern. Part A: Syst. Humans, vol. 39, no. 3, pp. 597-608, 2009.
    • (2009) IEEE Tran. Syst., Man, Cybern. Part A: Syst. Humans , vol.39 , Issue.3 , pp. 597-608
    • Juang, C.-F.1    Lu, C.-M.2
  • 24
    • 84855691014 scopus 로고    scopus 로고
    • Learning-based ship design optimization approach
    • Mar
    • H. Cui, O. Turan, and P. Sayer, "Learning-based ship design optimization approach," Comput. Aided Design, vol. 44, no. 3, Mar. 2012.
    • (2012) Comput. Aided Design , vol.44 , Issue.3
    • Cui, H.1    Turan, O.2    Sayer, P.3
  • 25
    • 26444601262 scopus 로고    scopus 로고
    • Cooperative multi-agent learning: The state of the art
    • DOI 10.1007/s10458-005-2631-2
    • L. Panait and S. Luke, "Cooperative multi-agent learning: The state of the art," Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3, pp. 387-434, Nov. 2005. (Pubitemid 41425094)
    • (2005) Autonomous Agents and Multi-Agent Systems , vol.11 , Issue.3 , pp. 387-434
    • Panait, L.1    Luke, S.2
  • 26
    • 84863180555 scopus 로고    scopus 로고
    • A distributed Nash Q-learning approach for optimizing urban traffic
    • X.-H. Xia, L.-H. Xu, and X.-Y. Kuang, "A distributed Nash Q-learning approach for optimizing urban traffic," J. Convergence Inf. Technol., vol. 7, no. 2, pp. 92-100, 2012.
    • (2012) J. Convergence Inf. Technol. , vol.7 , Issue.2 , pp. 92-100
    • Xia, X.-H.1    Xu, L.-H.2    Kuang, X.-Y.3
  • 28
    • 84859441950 scopus 로고    scopus 로고
    • A macro-evolutionary multi-objective immune algorithm with application to optimal allocation of water resources in Dongjiang River basins, South China
    • May
    • D. Liu, S. Guo, X. Chen, Q. Shao, Q. Ran, X. Song, and Z. Wang, "A macro-evolutionary multi-objective immune algorithm with application to optimal allocation of water resources in Dongjiang River basins, South China," Stochastic Environmental Research and Risk Assessment, vol. 26, no. 4, pp. 491-507, May 2012.
    • (2012) Stochastic Environmental Research and Risk Assessment , vol.26 , Issue.4 , pp. 491-507
    • Liu, D.1    Guo, S.2    Chen, X.3    Shao, Q.4    Ran, Q.5    Song, X.6    Wang, Z.7
  • 29
    • 0004049893 scopus 로고
    • Ph.D. dissertation, King's College, Cambridge, U.K., May
    • C. Watkins, "Learning from delayed rewards," Ph.D. dissertation, King's College, Cambridge, U.K., May 1989.
    • (1989) Learning from Delayed Rewards
    • Watkins, C.1
  • 30
    • 4644369748 scopus 로고    scopus 로고
    • Nash Q-learning for general-sum stochastic games
    • J. Hu andM. P.Wellman, "Nash Q-learning for general-sum stochastic games," J. Mach. Learning Res., vol. 4, no. 6, pp. 1039-1069, 2003.
    • (2003) J. Mach. Learning Res. , vol.4 , Issue.6 , pp. 1039-1069
    • Hu, J.1    Wellman, M.P.2
  • 31
    • 33746826183 scopus 로고    scopus 로고
    • Multiagent reinforcement learning for multi-robot systems: A survey
    • [Online]. Available
    • E. Yang and D. Gu, "Multiagent reinforcement learning for multi-robot systems: A survey," Tech. Rep. 2004. [Online]. Available: http://www.essex.ac.uk/csee/research/publications/technicalreports/2004/csm404. pdf
    • (2004) Tech. Rep
    • Yang, E.1    Gu, D.2
  • 32
    • 79951858262 scopus 로고    scopus 로고
    • A novel multi-agent reinforcement learning approach for job scheduling in Grid computing
    • May
    • J. Wu, X. Xu, P. Zhang, and C. Liu, "A novel multi-agent reinforcement learning approach for job scheduling in Grid computing," Future Generation Comput. Syst., vol. 27, no. 5, pp. 430-439, May 2011.
    • (2011) Future Generation Comput. Syst. , vol.27 , Issue.5 , pp. 430-439
    • Wu, J.1    Xu, X.2    Zhang, P.3    Liu, C.4
  • 33
    • 33746156507 scopus 로고    scopus 로고
    • Multiagent reinforcement learning with the partly high-dimensional state space
    • DOI 10.1002/scj.20526
    • K. Fujita and H. Matsuo, "Multiagent reinforcement learning with the partly high-dimensional state space," Syst. Comput. Japan, vol. 37, no. 9, pp. 22-31, 2006. (Pubitemid 44085938)
    • (2006) Systems and Computers in Japan , vol.37 , Issue.9 , pp. 22-31
    • Fujita, K.1    Matsuo, H.2
  • 34
    • 0001547175 scopus 로고    scopus 로고
    • Value-function reinforcement learning in Markov games
    • PII S1389041701000158
    • M. L. Littman, "Value-function reinforcement learning in Markov games," Cognitive Syst. Res., vol. 2, no. 1, pp. 55-66, 2001. (Pubitemid 33718550)
    • (2001) Cognitive Systems Research , vol.2 , Issue.1 , pp. 55-66
    • Littman, M.L.1
  • 35
    • 34547098844 scopus 로고    scopus 로고
    • Kernel-based least squares policy iteration for reinforcement learning
    • DOI 10.1109/TNN.2007.899161, Neural Networks for Feedback Control Systems
    • X. Xu, D. Hu, and X. Lu, "Kernel-based least squares policy iteration for reinforcement learning," IEEE Trans. Neural Networks, vol. 18, no. 4, pp. 973-992, Jul. 2007. (Pubitemid 47098876)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.4 , pp. 973-992
    • Xu, X.1    Hu, D.2    Lu, X.3
  • 37
    • 35548964683 scopus 로고    scopus 로고
    • Optimal allocation models for regional water resources with sustainable development
    • H. Wang and Y. Tong, "Optimal allocation models for regional water resources with sustainable development," J. Tsinghua Univ. (Sci. Technol.), vol. 47, no. 9, pp. 1531-1536, Sep. 2007. (Pubitemid 350009718)
    • (2007) Qinghua Daxue Xuebao/Journal of Tsinghua University , vol.47 , Issue.9 , pp. 1531-1536
    • Wang, H.1    Tong, Y.2
  • 39
    • 84878481862 scopus 로고    scopus 로고
    • A decision tool for optimal irrigated crop planning and water resources sustainability
    • [Online]. Available
    • A. Montazar, "A decision tool for optimal irrigated crop planning and water resources sustainability," J. Global Opt. pp. 1-14, 2011. [Online]. Available: http://dx.doi.org/10.1007/s10898-011-9803-1
    • (2011) J. Global Opt. , pp. 1-14
    • Montazar, A.1
  • 40
    • 84859108005 scopus 로고    scopus 로고
    • Many-objective de Novo water supply portfolio planning under deep uncertainty
    • Jun
    • J. R. Kasprzyk, P. M. Reed, G. W. Characklis, and B. R. Kirsch, "Many-objective de Novo water supply portfolio planning under deep uncertainty," Environmental Modelling Software, vol. 34, no. SI, pp. 87-104, Jun. 2012.
    • (2012) Environmental Modelling Software , vol.34 , pp. 87-104
    • Kasprzyk, J.R.1    Reed, P.M.2    Characklis, G.W.3    Kirsch, B.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.