메뉴 건너뛰기




Volumn , Issue , 2009, Pages 116-132

Continuous post-mining of association rules in a data stream management system

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84892228404     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-60566-404-0.ch007     Document Type: Chapter
Times cited : (1)

References (40)
  • 1
    • 0031649139 scopus 로고    scopus 로고
    • Online generation of association rules
    • In
    • Aggarwal, C. C., & Yu, P. S. (1998). Online generation of association rules. In ICDE (pp. 402-411).
    • (1998) ICDE , pp. 402-411
    • Aggarwal, C.C.1    Yu, P.S.2
  • 2
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • In
    • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In VLDB (pp. 487-499).
    • (1994) VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 34547637414 scopus 로고    scopus 로고
    • A data stream language and system designed for power and extensibility
    • In
    • Bai, Y., Thakkar, H., Wang, H., Luo, C., & Zaniolo, C. (2000). A data stream language and system designed for power and extensibility. In CIKM (pp.337-346).
    • (2000) CIKM , pp. 337-346
    • Bai, Y.1    Thakkar, H.2    Wang, H.3    Luo, C.4    Zaniolo, C.5
  • 5
    • 0031161999 scopus 로고    scopus 로고
    • Beyond market baskets: Generalizing association rules to correlations
    • In
    • Brin, S., Motwani, R., & Silverstein, C. (1997). Beyond market baskets: Generalizing association rules to correlations. In SIGMOD (pp. 265-276).
    • (1997) SIGMOD , pp. 265-276
    • Brin, S.1    Motwani, R.2    Silverstein, C.3
  • 6
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • In
    • Brin, S., Motwani, S., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. In SIGMOD (pp. 255-264).
    • (1997) SIGMOD , pp. 255-264
    • Brin, S.1    Motwani, S.2    Ullman, J.D.3    Tsur, S.4
  • 9
    • 19544377965 scopus 로고    scopus 로고
    • Moment: Maintaining closed frequent itemsets over a stream sliding window
    • In
    • Chi, Y., Wang, H., Yu, P. S., & Muntz, R. R. (2004). Moment: Maintaining closed frequent itemsets over a stream sliding window. In ICDM (pp 59-66).
    • (2004) ICDM , pp. 59-66
    • Chi, Y.1    Wang, H.2    Yu, P.S.3    Muntz, R.R.4
  • 10
    • 19544370834 scopus 로고    scopus 로고
    • Incremental clustering for mining in a data warehousing environment
    • In
    • Ester, M., Kriegel, H.-P., Sander, J., Wimmer, M., & Xu, X. (1998). Incremental clustering for mining in a data warehousing environment. In VLDB (pp. 323-333).
    • (1998) VLDB , pp. 323-333
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Wimmer, M.4    Xu, X.5
  • 12
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • In
    • Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In SIGMOD (pp. 1-12).
    • (2000) SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 13
    • 33749554404 scopus 로고    scopus 로고
    • Cfi-stream: Mining closed frequent itemsets in data streams
    • In
    • Jiang, N., & Gruenwald, D. L. (2006). Cfi-stream: mining closed frequent itemsets in data streams. In SIGKDD (pp. 592-597).
    • (2006) SIGKDD , pp. 592-597
    • Jiang, N.1    Gruenwald, D.L.2
  • 14
    • 33644920942 scopus 로고    scopus 로고
    • Research issues in data stream association rule mining
    • Jiang, N., & Gruenwald, L. (2006). Research issues in data stream association rule mining. SIGMOD Record (pp. 14-19).
    • (2006) SIGMOD Record , pp. 14-19
    • Jiang, N.1    Gruenwald, L.2
  • 15
    • 84900284692 scopus 로고    scopus 로고
    • Efficient algorithm for hierarchical online mining of association rules
    • In
    • Kumar, K. B., & Jotwani, N. (2006). Efficient algorithm for hierarchical online mining of association rules. In COMAD.
    • (2006) COMAD
    • Kumar, K.B.1    Jotwani, N.2
  • 16
    • 9944236785 scopus 로고    scopus 로고
    • Sliding window filtering: An efficient method for incremental mining on a time-variant database
    • Lee, C., Lin, C., & Chen, M. (2005). Sliding window filtering: an efficient method for incremental mining on a time-variant database. Information Systems (pp. 227-244).
    • (2005) Information Systems , pp. 227-244
    • Lee, C.1    Lin, C.2    Chen, M.3
  • 18
    • 33746682304 scopus 로고    scopus 로고
    • Cantree: A tree structure for efficient incremental mining of frequent patterns
    • In
    • Leung, C.-S., Khan, Q., & Hoque, T. (2005). Cantree: A tree structure for efficient incremental mining of frequent patterns. In ICDM (pp. 274-281).
    • (2005) ICDM , pp. 274-281
    • Leung, C.-S.1    Khan, Q.2    Hoque, T.3
  • 19
    • 78149313084 scopus 로고    scopus 로고
    • Cmar: Accurate and efficient classification based on multiple classassociation rules
    • In
    • Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple classassociation rules. In ICDM (pp. 369-376).
    • (2001) ICDM , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 20
    • 0142191637 scopus 로고    scopus 로고
    • Pruning and summarizing the discovered associations
    • In
    • Liu, B., Hsu, W., & Ma, Y. (1999). Pruning and summarizing the discovered associations. In KDD (pp. 125-134).
    • (1999) KDD , pp. 125-134
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 21
    • 0034593061 scopus 로고    scopus 로고
    • Multi-level organization and summarization of the discovered rules
    • In
    • Liu, B., Hu, M., & Hsu, W. (2000). Multi-level organization and summarization of the discovered rules. In Knowledge Discovery and Data Mining (pp. 208-217).
    • (2000) Knowledge Discovery and Data Mining , pp. 208-217
    • Liu, B.1    Hu, M.2    Hsu, W.3
  • 22
    • 78149338936 scopus 로고    scopus 로고
    • Analyzing the interestingness of association rules from the temporal dimension
    • In
    • Liu, B., Ma, Y., & Lee, R. (2001). Analyzing the interestingness of association rules from the temporal dimension. In ICDM (pp. 377-384).
    • (2001) ICDM , pp. 377-384
    • Liu, B.1    Ma, Y.2    Lee, R.3
  • 23
    • 34248150950 scopus 로고    scopus 로고
    • Mining maximal frequent itemsets from data streams
    • Mao, G., Wu, X., Zhu, X., Chen, G., & Liu, C. (2007). Mining maximal frequent itemsets from data streams. Information Science (pp. 251-262).
    • (2007) Information Science , pp. 251-262
    • Mao, G.1    Wu, X.2    Zhu, X.3    Chen, G.4    Liu, C.5
  • 24
    • 52649129706 scopus 로고    scopus 로고
    • Verifying and mining frequent patterns from large windows over data streams
    • Mozafari, B., Thakkar, H., & Zaniolo, C. (2008). Verifying and mining frequent patterns from large windows over data streams. ICDE (pp. 179-188).
    • (2008) ICDE , pp. 179-188
    • Mozafari, B.1    Thakkar, H.2    Zaniolo, C.3
  • 25
    • 84976830511 scopus 로고
    • An effective hash-based algorithm for mining association rules
    • In
    • Park, J. S., Chen, M.-S., & Yu, P. S. (1995). An effective hash-based algorithm for mining association rules. In SIGMOD (pp. 175-186).
    • (1995) SIGMOD , pp. 175-186
    • Park, J.S.1    Chen, M.-S.2    Yu, P.S.3
  • 26
    • 0033096890 scopus 로고    scopus 로고
    • Efficient mining of association rules using closed itemset lattices
    • Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999). Efficient mining of association rules using closed itemset lattices. Information Systems (pp. 25-46).
    • (1999) Information Systems , pp. 25-46
    • Pasquier, N.1    Bastide, Y.2    Taouil, R.3    Lakhal, L.4
  • 27
    • 0004552258 scopus 로고    scopus 로고
    • Closet: An efficient algorithm for mining frequent closed itemsets
    • In
    • Pei, J., Han, J., & Mao, R. (2000). CLOSET: An efficient algorithm for mining frequent closed itemsets. In SIGMOD (pp. 21-30).
    • (2000) SIGMOD , pp. 21-30
    • Pei, J.1    Han, J.2    Mao, R.3
  • 28
    • 13844256245 scopus 로고    scopus 로고
    • Mining sequential patterns by pattern-growth: The prefixspan approach
    • Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. (2004). Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE TKDE, 16(11), 1424-1440.
    • (2004) IEEE TKDE , vol.16 , Issue.11 , pp. 1424-1440
    • Pei, J.1    Han, J.2    Mortazavi-Asl, B.3    Wang, J.4    Pinto, H.5    Chen, Q.6    Dayal, U.7    Hsu, M.8
  • 29
    • 0002877253 scopus 로고
    • Discovery, analysis, and presentation of strong rules
    • In
    • Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. In KDD.
    • (1991) KDD
    • Piatetsky-Shapiro, G.1
  • 30
    • 0034819285 scopus 로고    scopus 로고
    • Optimization of sequence queries in database systems
    • In
    • Sadri, R., Zaniolo, C., Zarkesh, A., & Adibi, J. (2001). Optimization of sequence queries in database systems. In PODS (pp. 71-81).
    • (2001) PODS , pp. 71-81
    • Sadri, R.1    Zaniolo, C.2    Zarkesh, A.3    Adibi, J.4
  • 32
    • 84897708583 scopus 로고    scopus 로고
    • Mining sequential patterns: Generalizations and performance improvements
    • In
    • Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. In EDBT (pp. 3-17).
    • (1996) EDBT , pp. 3-17
    • Srikant, R.1    Agrawal, R.2
  • 33
    • 0242625291 scopus 로고    scopus 로고
    • Selecting the right interestingness measure for association patterns
    • In
    • Tan, P., Kumar, V., & Srivastava, J. (2002). Selecting the right interestingness measure for association patterns. In Knowledge Discovery and Data Mining (pp. 32-41).
    • (2002) Knowledge Discovery and Data Mining , pp. 32-41
    • Tan, P.1    Kumar, V.2    Srivastava, J.3
  • 34
    • 24344449128 scopus 로고    scopus 로고
    • Building data mining solutions with ole db for dm and xml analysis
    • Tang, Z., Maclennan, J., & Kim, P. (2005). Building data mining solutions with OLE DB for DM and XML analysis. SIGMOD Record, 34(2), 80-85.
    • (2005) SIGMOD Record , vol.34 , Issue.2 , pp. 80-85
    • Tang, Z.1    Maclennan, J.2    Kim, P.3
  • 35
    • 57349149485 scopus 로고    scopus 로고
    • Designing an inductive data stream management system: The stream mill experience
    • In
    • Thakkar, H., Mozafari, B., & Zaniolo, C. (2008). Designing an inductive data stream management system: the stream mill experience. In SSPS (pp. 79-88).
    • (2008) SSPS , pp. 79-88
    • Thakkar, H.1    Mozafari, B.2    Zaniolo, C.3
  • 36
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • In
    • Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. In SIGKDD (pp. 226-235).
    • (2003) SIGKDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 39
    • 33646140552 scopus 로고    scopus 로고
    • A false negative approach to mining frequent itemsets from high speed transactional data streams
    • Yu, J., Chong, Z., Lu, H., Zhang, Z., & Zhou, A. A false negative approach to mining frequent itemsets from high speed transactional data streams. Inf. Sci. 176(14).
    • Inf. Sci , vol.176 , Issue.14
    • Yu, J.1    Chong, Z.2    Lu, H.3    Zhang, Z.4    Zhou, A.5
  • 40
    • 2442629149 scopus 로고    scopus 로고
    • Charm: An efficient algorithm for closed itemset mining
    • In
    • Zaki, M. J., & Hsiao, C. (2002). CHARM: An efficient algorithm for closed itemset mining. In SIAM.
    • (2002) SIAM
    • Zaki, M.J.1    Hsiao, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.