메뉴 건너뛰기




Volumn 30, Issue 3, 2005, Pages 227-244

Sliding window filtering: An efficient method for incremental mining on a time-variant database

Author keywords

Association rules; Data mining; Incremental mining; Sliding window filtering; Time variant database

Indexed keywords

ALGORITHMS; ASSOCIATIVE PROCESSING; COMPUTER SCIENCE; DATA MINING; DATA PROCESSING; ELECTRONIC COMMERCE; SALES; SENSITIVITY ANALYSIS; TREES (MATHEMATICS); WORLD WIDE WEB;

EID: 9944236785     PISSN: 03064379     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.is.2004.02.001     Document Type: Article
Times cited : (49)

References (38)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • May
    • R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, Proceedings of the ACM SIGMOD, May 1993, pp. 207-216.
    • (1993) Proceedings of the ACM SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 4
    • 0030387631 scopus 로고    scopus 로고
    • Data mining: An overview from database perspective
    • M.-S. Chen, J. Han, P.S. Yu, Data mining: an overview from database perspective, IEEE Trans. Knowledge Data Eng. 8 (6) (1996) 866-883.
    • (1996) IEEE Trans. Knowledge Data Eng. , vol.8 , Issue.6 , pp. 866-883
    • Chen, M.-S.1    Han, J.2    Yu, P.S.3
  • 12
    • 0035051307 scopus 로고    scopus 로고
    • Finding interesting associations without support pruning
    • E. Cohen, et al., Finding interesting associations without support pruning, IEEE Trans. Knowledge Data Eng. (2001) 64-78.
    • (2001) IEEE Trans. Knowledge Data Eng. , pp. 64-78
    • Cohen, E.1
  • 17
    • 0031220368 scopus 로고    scopus 로고
    • Using a hash-based method with transaction trimming for mining association rules
    • J.-S. Park, M.-S. Chen, P.S. Yu, Using a hash-based method with transaction trimming for mining association rules, IEEE Trans. Knowledge and Data Eng. 9 (5) (1997) 813-825.
    • (1997) IEEE Trans. Knowledge and Data Eng. , vol.9 , Issue.5 , pp. 813-825
    • Park, J.-S.1    Chen, M.-S.2    Yu, P.S.3
  • 21
    • 0010279665 scopus 로고    scopus 로고
    • A tree projection algorithm for generation of frequent itemsets
    • special issue on High Performance Data Mining
    • R. Agarwal, C. Aggarwal, V.V.V. Prasad, A tree projection algorithm for generation of frequent itemsets, J. Parallel Distributed Comput. (special issue on High Performance Data Mining) (2000).
    • (2000) J. Parallel Distributed Comput.
    • Agarwal, R.1    Aggarwal, C.2    Prasad, V.V.V.3
  • 22
    • 0003372359 scopus 로고    scopus 로고
    • Mining frequent patterns by pattern-growth: Methodology and implications
    • (special issue on Scalable Data Mining Algorithms), December
    • J. Han, J. Pei, Mining frequent patterns by pattern-growth: methodology and implications, ACM SIGKDD Explorations (special issue on Scalable Data Mining Algorithms), December 2000.
    • (2000) ACM SIGKDD Explorations
    • Han, J.1    Pei, J.2
  • 25
    • 0032650246 scopus 로고    scopus 로고
    • Constraint-based, multidimensional data mining
    • special issues on Data Mining
    • J. Han, L.V.S. Lakshmanan, R.T. Ng, Constraint-based, multidimensional data mining, Computer (special issues on Data Mining) (1999) 46-50.
    • (1999) Computer , pp. 46-50
    • Han, J.1    Lakshmanan, L.V.S.2    Ng, R.T.3
  • 30
    • 0002784345 scopus 로고    scopus 로고
    • Algorithms for association rule mining - A general survey and comparison
    • J. Hipp, U. Güntzer, G. Nakhaeizadeh, Algorithms for association rule mining - a general survey and comparison, SIGKDD Explorations 2 (1) (2000) 58-64.
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 58-64
    • Hipp, J.1    Güntzer, U.2    Nakhaeizadeh, G.3
  • 35
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket data, ACM SIGMOD Rec. 26 (2) (1997) 255-264.
    • (1997) ACM SIGMOD Rec. , vol.26 , Issue.2 , pp. 255-264
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 37
    • 0002663969 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • September
    • H. Toivonen, Sampling large databases for association rules, Proceedings of the 22nd VLDB Conference, September 1996, pp. 134-145.
    • (1996) Proceedings of the 22nd VLDB Conference , pp. 134-145
    • Toivonen, H.1
  • 38
    • 0003959442 scopus 로고
    • Fast sequential and parallel algorithms for association rule mining: A comparison
    • Department of Computer Science, University of Maryland, College Park, MD
    • A. Mueller, Fast sequential and parallel algorithms for association rule mining: a comparison, Technical Report CS-TR-3515, Department of Computer Science, University of Maryland, College Park, MD, 1995.
    • (1995) Technical Report , vol.CS-TR-3515
    • Mueller, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.