-
1
-
-
34047148984
-
Operators associated with a stochastic differential equation driven by fractional Brownian motions
-
MR2320949
-
F. Baudoin and L. Coutin. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007) 550-574. MR2320949
-
(2007)
Stochastic Process. Appl
, vol.117
, pp. 550-574
-
-
Baudoin, F.1
Coutin, L.2
-
2
-
-
34547179020
-
A version of Hörmander's theorem for the fractional Brownian motion
-
MR2322701
-
F. Baudoin and M. Hairer. A version of Hörmander's theorem for the fractional Brownian motion. Probab. Theory Related Fields 139 (2007) 373-395. MR2322701
-
(2007)
Probab. Theory Related Fields
, vol.139
, pp. 373-395
-
-
Baudoin, F.1
Hairer, M.2
-
3
-
-
79951680473
-
Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions
-
MR2770906
-
F. Baudoin and C. Ouyang. Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions. Stochastic. Process. Appl. 121 (2011) 759-792. MR2770906
-
(2011)
Stochastic. Process. Appl
, vol.121
, pp. 759-792
-
-
Baudoin, F.1
Ouyang, C.2
-
5
-
-
80051703590
-
Estimates for the solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈ (13, 12)
-
MR2836524
-
M. Besalú and D. Nualart. Estimates for the solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈ (13, 12) . Stoch. Dyn. 11 (2011) 243-263. MR2836524
-
(2011)
Stoch. Dyn
, vol.11
, pp. 243-263
-
-
Besalú, M.1
Nualart, D.2
-
6
-
-
0039907778
-
Martingale representation and logarithmic Sobolev inequality
-
MR1484557
-
M. Capitaine, E. Hsu and M. Ledoux. Martingale representation and logarithmic Sobolev inequality. Electron. Com. Probab. 2 (1997) 71-81. MR1484557
-
(1997)
Electron. Com. Probab
, vol.2
, pp. 71-81
-
-
Capitaine, M.1
Hsu, E.2
Ledoux, M.3
-
7
-
-
84891958851
-
Densities for rough differential equations under Hörmander condition
-
To appear
-
T. Cass and P. Friz. Densities for rough differential equations under Hörmander condition. Ann. Math. To appear.
-
Ann. Math
-
-
Cass, T.1
Friz, P.2
-
8
-
-
62549127896
-
Non-degeneracy of Wiener functionals arising from rough differential equations
-
MR2485431
-
T. Cass, P. Friz and N. Victoir. Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Amer. Math. Soc. 361 (2009) 3359-3371. MR2485431
-
(2009)
Trans. Amer. Math. Soc
, vol.361
, pp. 3359-3371
-
-
Cass, T.1
Friz, P.2
Victoir, N.3
-
11
-
-
0036002985
-
Stochastic analysis, rough path analysis and fractional Brownian motions
-
MR1883719
-
L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. MR1883719
-
(2002)
Probab. Theory Related Fields
, vol.122
, pp. 108-140
-
-
Coutin, L.1
Qian, Z.2
-
12
-
-
4544252275
-
Potential theory for hyperbolic SPDEs
-
MR2073187
-
R. C. Dalang and E. Nualart. Potential theory for hyperbolic SPDEs. Ann. Probab. 32(3A) (2004) 2099-2148. MR2073187
-
(2004)
Ann. Probab
, vol.32
, Issue.3 A
, pp. 2099-2148
-
-
Dalang, R.C.1
Nualart, E.2
-
13
-
-
62649139100
-
Differential equations driven by rough paths: An approach via discrete approximation
-
abm009. MR2387018
-
A. Davie. Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. Express. 2007 (2007) abm009. MR2387018
-
(2007)
Appl. Math. Res. Express
, vol.2007
-
-
Davie, A.1
-
14
-
-
84874933937
-
A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion
-
A. Deya, A. Neuenkirch and S. Tindel. A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 48(2) (2012) 518-550.
-
(2012)
Ann. Inst. H. Poincaré Probab. Statist
, vol.48
, Issue.2
, pp. 518-550
-
-
Deya, A.1
Neuenkirch, A.2
Tindel, S.3
-
17
-
-
4344654665
-
Controlling rough paths
-
MR2091358
-
M. Gubinelli. Controlling rough paths. J. Funct. Anal. 216 (2004) 86-140. MR2091358
-
(2004)
J. Funct. Anal
, vol.216
, pp. 86-140
-
-
Gubinelli, M.1
-
18
-
-
77953669175
-
Rough evolution equations
-
MR2599193
-
M. Gubinelli and S. Tindel. Rough evolution equations. Ann. Probab. 38 (2010) 1-75. MR2599193
-
(2010)
Ann. Probab
, vol.38
, pp. 1-75
-
-
Gubinelli, M.1
Tindel, S.2
-
19
-
-
17044422110
-
Ergodicity of stochastic differential equations driven by fractional Brownianmotion
-
MR2123208
-
M. Hairer. Ergodicity of stochastic differential equations driven by fractional Brownianmotion. Ann. Probab. 33 (2005) 703-758. MR2123208
-
(2005)
Ann. Probab
, vol.33
, pp. 703-758
-
-
Hairer, M.1
-
20
-
-
51549086483
-
Ergodicity theory of SDEs with extrinsic memory
-
MR2349580
-
M. Hairer and A. Ohashi. Ergodicity theory of SDEs with extrinsic memory. Ann. Probab. 35 (2007) 1950-1977. MR2349580
-
(2007)
Ann. Probab
, vol.35
, pp. 1950-1977
-
-
Hairer, M.1
Ohashi, A.2
-
22
-
-
10844231509
-
Stochastic analysis on manifolds
-
Amer. Math. Soc., Providence, RI, MR1882015
-
E. Hsu. Stochastic Analysis on Manifolds. Graduate Series in Mathematics 38. Amer. Math. Soc., Providence, RI, 2002. MR1882015
-
(2002)
Graduate Series in Mathematics
, vol.38
-
-
Hsu, E.1
-
23
-
-
84883642268
-
Differential equations driven by Hölder continuous functions of order greater than 1/2
-
MR2397797
-
Y. Hu and D. Nualart. Differential equations driven by Hölder continuous functions of order greater than 1/2. Abel Symp. 2 (2007) 349-413. MR2397797
-
(2007)
Abel Symp
, vol.2
, pp. 349-413
-
-
Hu, Y.1
Nualart, D.2
-
24
-
-
19744382497
-
Generalized langevin equation with fractional gaussian noise: Subdiffusion within a single protein molecule
-
S. Kou and X. Sunney-Xie. Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 (2004) 18.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 18
-
-
Kou, S.1
Sunney-Xie, X.2
-
25
-
-
0012942540
-
The concentration of measure phenomenon
-
Amer. Math. Soc., Providence, RI, MR1849347
-
M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Amer. Math. Soc., Providence, RI, 2001. MR1849347
-
(2001)
Mathematical Surveys and Monographs
, vol.89
-
-
Ledoux, M.1
-
27
-
-
31444454600
-
Large deviations for rough paths of the fractional Brownian motion
-
MR2199801
-
A. Millet and M. Sanz-Solé. Large deviations for rough paths of the fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Stat. 42 (2006) 245-271. MR2199801
-
(2006)
Ann. Inst. H. Poincaré Probab. Stat
, vol.42
, pp. 245-271
-
-
Millet, A.1
Sanz-Solé, M.2
-
30
-
-
52049109198
-
The malliavin calculus and related topics, 2nd edition
-
Springer-Verlag, Berlin, MR2200233
-
D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer-Verlag, Berlin, 2006. MR2200233
-
(2006)
Probability and Its Applications
-
-
Nualart, D.1
-
31
-
-
0038771348
-
Differential equations driven by fractional Brownian motion
-
MR1893308
-
D. Nualart and A. Rǎ;̧scanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. MR1893308
-
(2002)
Collect. Math
, vol.53
, pp. 55-81
-
-
Nualart, D.1
Rǎşcanu, A.2
-
32
-
-
58549118426
-
Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion
-
MR2493996
-
D. Nualart and B. Saussereau. Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl. 119 (2009) 391-409. MR2493996
-
(2009)
Stochastic Process. Appl
, vol.119
, pp. 391-409
-
-
Nualart, D.1
Saussereau, B.2
-
33
-
-
68749091192
-
Elucidating the origin of anomalous diffusion in crowded fluids
-
J. Szymanski and M. Weiss. Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103 (2009) 3.
-
(2009)
Phys. Rev. Lett
, vol.103
, pp. 3
-
-
Szymanski, J.1
Weiss, M.2
-
34
-
-
77950686225
-
Quantitative analysis of single particle trajectories: Mean maximal excursion method
-
V. Tejedor, O. Bénichou, R. Voituriez, R. Jungmann, F. Simmel, C. Selhuber-Unkel, L. Oddershede and R. Metzle. Quantitative analysis of single particle trajectories: Mean maximal excursion method. Biophysical J. 98 (2010) 1364-1372.
-
(2010)
Biophysical J.
, vol.98
, pp. 1364-1372
-
-
Tejedor, V.1
Bénichou, O.2
Voituriez, R.3
Jungmann, R.4
Simmel, F.5
Selhuber-Unkel, C.6
Oddershede, L.7
Metzle, R.8
-
36
-
-
0038290919
-
Integration with respect to fractal functions and stochastic calculus I. Probab
-
MR1640795
-
M. Zähle. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374. MR1640795
-
(1998)
Theory Related Fields
, vol.111
, pp. 333-374
-
-
Zähle, M.1
|