메뉴 건너뛰기




Volumn 7, Issue 1, 2014, Pages 231-243

Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in arabidopsis

Author keywords

Asparagine metabolism; Cyanide; Cyanide detoxification; Nitrilase; cyanoalanine

Indexed keywords

3 CYANOALANINE; 3-CYANOALANINE; ALANINE; BACTERIAL DNA; CYANIDE; DRUG DERIVATIVE; HYDROLASE; NITRILASE; T DNA; T-DNA; VEGETABLE PROTEIN;

EID: 84891801400     PISSN: 16742052     EISSN: 17529867     Source Type: Journal    
DOI: 10.1093/mp/sst110     Document Type: Article
Times cited : (33)

References (53)
  • 1
    • 0024877059 scopus 로고
    • Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition
    • Alström, S., and Burns, R.G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fert. Soils. 7, 232-238.
    • (1989) Biol. Fert. Soils. , vol.7 , pp. 232-238
    • Alström, S.1    Burns, R.G.2
  • 2
    • 84860873784 scopus 로고    scopus 로고
    • Cyanide is an adequate agonist of the plant hormone ethylene for studying signalling of sensor kinase ETR1 at the molecular level
    • Bisson, M.M.A., and Groth, G. (2012). Cyanide is an adequate agonist of the plant hormone ethylene for studying signalling of sensor kinase ETR1 at the molecular level. Biochem. J. 444, 261-267.
    • (2012) Biochem. J. , vol.444 , pp. 261-267
    • Bisson, M.M.A.1    Groth, G.2
  • 3
    • 79551478200 scopus 로고    scopus 로고
    • Volatilemediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide
    • Blom, D., Fabbri, C., Eberl, L., and Weisskopf, L. (2011). Volatilemediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl. Environ. Microb. 77, 1000-1008.
    • (2011) Appl. Environ. Microb. , vol.77 , pp. 1000-1008
    • Blom, D.1    Fabbri, C.2    Eberl, L.3    Weisskopf, L.4
  • 4
    • 0014430124 scopus 로고
    • Cyanide metabolism in higher plants. 3. The biosynthesis of beta-cyanolanine
    • Blumenthal, S.G., Hendrickson, H.R., Abrol, Y.P., and Conn, E.E. (1968). Cyanide metabolism in higher plants. 3. The biosynthesis of beta-cyanolanine. J. Biol. Chem. 243, 5302-5307.
    • (1968) J. Biol. Chem. , vol.243 , pp. 5302-5307
    • Blumenthal, S.G.1    Hendrickson, H.R.2    Abrol, Y.P.3    Conn, E.E.4
  • 5
    • 0010286922 scopus 로고
    • Incorporation of hydrocyanic acid labelled with carbon-14 into asparagine in seedlings
    • Blumenthal-Goldschmidt, S., Butler, G.W., and Conn, E.E. (1963). Incorporation of hydrocyanic acid labelled with carbon-14 into asparagine in seedlings. Nature. 197, 718-719.
    • (1963) Nature. , vol.197 , pp. 718-719
    • Blumenthal-Goldschmidt, S.1    Butler, G.W.2    Conn, E.E.3
  • 6
    • 33745590665 scopus 로고    scopus 로고
    • The role of reactive oxygen species in cell growth: Lessons from root hairs
    • Carol, R.J., and Dolan, L. (2006). The role of reactive oxygen species in cell growth: lessons from root hairs. J. Exp. Bot. 57, 1829-1834.
    • (2006) J. Exp. Bot. , vol.57 , pp. 1829-1834
    • Carol, R.J.1    Dolan, L.2
  • 7
    • 33947388739 scopus 로고    scopus 로고
    • Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: Possible interaction with peroxidases
    • Dunand, C., Crèvecoeur, M., and Penel, C. (2007). Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 174, 332-341.
    • (2007) New Phytol. , vol.174 , pp. 332-341
    • Dunand, C.1    Crèvecoeur, M.2    Penel, C.3
  • 8
    • 2942579365 scopus 로고    scopus 로고
    • Biological degradation of cyanide compounds
    • Ebbs, S. (2004). Biological degradation of cyanide compounds. Curr. Opin. Biotechnol. 15, 231-236.
    • (2004) Curr. Opin. Biotechnol. , vol.15 , pp. 231-236
    • Ebbs, S.1
  • 9
    • 77954747597 scopus 로고    scopus 로고
    • Nitrogen supply and cyanide concentration influence the enrichment of nitrogen from cyanide in wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L.)
    • Ebbs, S.D., Kosma, D.K., Nielson, E.H., Machingura, M., Baker, A.J.M., and Woodrow, I.E. (2010). Nitrogen supply and cyanide concentration influence the enrichment of nitrogen from cyanide in wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L.). Plant Cell Environ. 33, 1152-1160.
    • (2010) Plant Cell Environ. , vol.33 , pp. 1152-1160
    • Ebbs, S.D.1    Kosma, D.K.2    Nielson, E.H.3    MacHingura, M.4    Baker, A.J.M.5    Woodrow, I.E.6
  • 10
    • 0242656426 scopus 로고
    • Inhibition of photosynthesis by azide and cyanide and the role of oxygen in photosynthesis
    • Forti, G., and Gerola, P. (1977). Inhibition of photosynthesis by azide and cyanide and the role of oxygen in photosynthesis. Plant Physiol. 59, 859-862.
    • (1977) Plant Physiol. , vol.59 , pp. 859-862
    • Forti, G.1    Gerola, P.2
  • 11
    • 0343045258 scopus 로고
    • Cyanide metabolism by seedlings
    • Fowden, L., and Bell, E.A. (1965). Cyanide metabolism by seedlings. Nature. 206, 110-112.
    • (1965) Nature. , vol.206 , pp. 110-112
    • Fowden, L.1    Bell, E.A.2
  • 12
    • 78649526445 scopus 로고    scopus 로고
    • Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana
    • García, I., Castellano, J.M., Vioque, B., Solano, R., Gotor, C., and Romero, L.C. (2010). Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana. Plant Cell. 22, 3268-3279.
    • (2010) Plant Cell. , vol.22 , pp. 3268-3279
    • García, I.1    Castellano, J.M.2    Vioque, B.3    Solano, R.4    Gotor, C.5    Romero, L.C.6
  • 14
    • 37849026162 scopus 로고    scopus 로고
    • Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling
    • Graham, J.W.A., Williams, T.C.R., Morgan, M., Fernie, A.R., Ratcliffe, R.G., and Sweetlove, L.J. (2007). Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell. 19, 3723-3738.
    • (2007) Plant Cell. , vol.19 , pp. 3723-3738
    • Graham, J.W.A.1    Williams, T.C.R.2    Morgan, M.3    Fernie, A.R.4    Ratcliffe, R.G.5    Sweetlove, L.J.6
  • 15
    • 0030501392 scopus 로고    scopus 로고
    • A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms
    • Grossmann, K. (1996). A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol. Plant. 97, 772-775.
    • (1996) Physiol. Plant. , vol.97 , pp. 772-775
    • Grossmann, K.1
  • 16
    • 0033927405 scopus 로고    scopus 로고
    • B-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis
    • Hatzfeld, Y., Maruyama, A., Schmidt, A., Noji, M, Ishizawa, K., and Saito, K. (2000). B-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol. 123, 1163-1171.
    • (2000) Plant Physiol. , vol.123 , pp. 1163-1171
    • Hatzfeld, Y.1    Maruyama, A.2    Schmidt, A.3    Noji, M.4    Ishizawa, K.5    Saito, K.6
  • 17
    • 70350245908 scopus 로고    scopus 로고
    • Nitrilase enzymes and their role in plant-microbe interactions
    • Howden, A.J.M., and Preston, G.M. (2009). Nitrilase enzymes and their role in plant-microbe interactions. Microb. Biotechnol. 2, 441-451.
    • (2009) Microb. Biotechnol. , vol.2 , pp. 441-451
    • Howden, A.J.M.1    Preston, G.M.2
  • 18
    • 58349084876 scopus 로고    scopus 로고
    • A conserved mechanism for nitrile metabolism in bacteria and plants
    • Howden, A.J.M., Harrison, C.J., and Preston, G.M. (2009a). A conserved mechanism for nitrile metabolism in bacteria and plants. Plant J. 57, 243-253.
    • (2009) Plant J. , vol.57 , pp. 243-253
    • Howden, A.J.M.1    Harrison, C.J.2    Preston, G.M.3
  • 19
    • 70350242935 scopus 로고    scopus 로고
    • Pseudomonas syringae pv. Syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid
    • Howden, A.J.M., Rico, A., Mentlak, T., Miguet, L., and Preston, G.M. (2009b). Pseudomonas syringae pv. syringae B728a hydrolyses indole-3- acetonitrile to the plant hormone indole-3-acetic acid. Mol. Plant. Pathol. 10, 857-865.
    • (2009) Mol. Plant. Pathol. , vol.10 , pp. 857-865
    • Howden, A.J.M.1    Rico, A.2    Mentlak, T.3    Miguet, L.4    Preston, G.M.5
  • 20
    • 0020758369 scopus 로고
    • Purification and properties of an asparagine aminotransferase from Pisum sativum leaves
    • Ireland, R.J., and Joy, K. (1983). Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. Arch. Biochem. Biophys. 223, 291-296.
    • (1983) Arch. Biochem. Biophys. , vol.223 , pp. 291-296
    • Ireland, R.J.1    Joy, K.2
  • 21
    • 0000252969 scopus 로고
    • Reversible inhibition of the calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide
    • Kaiser, W.M. (1979). Reversible inhibition of the calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta. 145, 377-382.
    • (1979) Planta. , vol.145 , pp. 377-382
    • Kaiser, W.M.1
  • 23
    • 16244388498 scopus 로고    scopus 로고
    • Uptake, metabolism, accumulation and toxicity of cyanide in willow trees
    • Larsen, M., Ucisik, A.S., and Trapp, S. (2005). Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ. Sci. Technol. 39, 2135-2142.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 2135-2142
    • Larsen, M.1    Ucisik, A.S.2    Trapp, S.3
  • 24
    • 0014323288 scopus 로고
    • Studies on asparagine synthesis utilization in seedlings
    • Lees, E.M., Farnden, K.J.F., and Elliott, W.H. (1968). Studies on asparagine synthesis utilization in seedlings. Arch. Biochem. Biophys. 126, 539-546.
    • (1968) Arch. Biochem. Biophys. , vol.126 , pp. 539-546
    • Lees, E.M.1    Farnden, K.J.F.2    Elliott, W.H.3
  • 25
    • 0141872568 scopus 로고    scopus 로고
    • Drought stress increases both cyanogenesis and β-cyanoalanine synthase activity in tobacco
    • Liang, W. (2003). Drought stress increases both cyanogenesis and β-cyanoalanine synthase activity in tobacco. Plant Sci. 165, 1109-1115.
    • (2003) Plant Sci. , vol.165 , pp. 1109-1115
    • Liang, W.1
  • 26
    • 34248580879 scopus 로고    scopus 로고
    • Gas chromatography mass spectrometry-based metabolite profiling in plants
    • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A.R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protoc. 1, 387-396.
    • (2006) Nature Protoc. , vol.1 , pp. 387-396
    • Lisec, J.1    Schauer, N.2    Kopka, J.3    Willmitzer, L.4    Fernie, A.R.5
  • 27
    • 16544393893 scopus 로고    scopus 로고
    • 2, and •oH) by maize roots and their role in wall loosening and elongation growth
    • 2, and •OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 136, 3114-3123.
    • (2004) Plant Physiol. , vol.136 , pp. 3114-3123
    • Liszkay, A.1    Van Der-Zalm, E.2    Schopfer, P.3
  • 28
    • 65249132985 scopus 로고    scopus 로고
    • MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing
    • Lommen, A. (2009). MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81, 3079-3086.
    • (2009) Anal. Chem. , vol.81 , pp. 3079-3086
    • Lommen, A.1
  • 29
    • 78649798060 scopus 로고    scopus 로고
    • Increased β-cyanoalanine synthase and asparaginase activity in nitrogen-deprived wheat exposed to cyanide
    • Machingura, M., and Ebbs, S.D. (2010). Increased β-cyanoalanine synthase and asparaginase activity in nitrogen-deprived wheat exposed to cyanide. J. Plant Nutr. Soil Sci. 173, 808-810.
    • (2010) J. Plant Nutr. Soil Sci. , vol.173 , pp. 808-810
    • MacHingura, M.1    Ebbs, S.D.2
  • 30
    • 84871435532 scopus 로고    scopus 로고
    • The β-cyanoalanine pathway is involved in the response to water deficit in Arabidopsis thaliana
    • Machingura, M., Sidebe, A., Wood, A.J., and Ebbs, S.D. (2013). The β-cyanoalanine pathway is involved in the response to water deficit in Arabidopsis thaliana. Plant Physiol. Biochem. 63, 159-169.
    • (2013) Plant Physiol. Biochem. , vol.63 , pp. 159-169
    • MacHingura, M.1    Sidebe, A.2    Wood, A.J.3    Ebbs, S.D.4
  • 31
    • 0033806223 scopus 로고    scopus 로고
    • Transgenic potato plants reveal the indispensable role of cystathionine beta-lyase in plant growth and development
    • Maimann, S., Wagner, C., Kreft, O., Zeh, M., Willmitzer, L., Hofgen, R., and Hesse, H. (2000). Transgenic potato plants reveal the indispensable role of cystathionine beta-lyase in plant growth and development. Plant J. 23, 747-758.
    • (2000) Plant J. , vol.23 , pp. 747-758
    • Maimann, S.1    Wagner, C.2    Kreft, O.3    Zeh, M.4    Willmitzer, L.5    Hofgen, R.6    Hesse, H.7
  • 32
    • 0001626381 scopus 로고
    • Metabolism of hydrogen cyanide by higher plants
    • Miller, J.M., and Conn, E.E. (1980). Metabolism of hydrogen cyanide by higher plants. Plant Physiol. 65, 1199-1202.
    • (1980) Plant Physiol. , vol.65 , pp. 1199-1202
    • Miller, J.M.1    Conn, E.E.2
  • 33
    • 84859632989 scopus 로고    scopus 로고
    • Auxin and ethylene: Collaborators or competitors?
    • Muday, G.K., Rahman, A., and Binder, B.M. (2012). Auxin and ethylene: collaborators or competitors? Trends Plant Sci. 17, 181-195.
    • (2012) Trends Plant Sci. , vol.17 , pp. 181-195
    • Muday, G.K.1    Rahman, A.2    Binder, B.M.3
  • 34
    • 0001692943 scopus 로고
    • Photorespiratory N donors, aminotansferase specificity and photosynthesis in a mutant of barley deficient in serine: Glyoxylate aminotransferase activity
    • Murray, A.J.S., Blackwell, R.D., Joy, K.W., and Lea, P.J. (1987). Photorespiratory N donors, aminotansferase specificity and photosynthesis in a mutant of barley deficient in serine: glyoxylate aminotransferase activity. Planta. 172, 106-113.
    • (1987) Planta. , vol.172 , pp. 106-113
    • Murray, A.J.S.1    Blackwell, R.D.2    Joy, K.W.3    Lea, P.J.4
  • 35
    • 0001213003 scopus 로고
    • Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene
    • Peiser, G.D., Wang, T.T., Hoffman, N.E., Yang, S.F., Liu, H.W., and Walsh, C.T. (1984). Formation of cyanide from carbon 1 of 1-aminocyclopropane-1- carboxylic acid during its conversion to ethylene. Proc. Natl Acad. Sci. U S A. 81, 3059-3063.
    • (1984) Proc. Natl Acad. Sci. U S A. , vol.81 , pp. 3059-3063
    • Peiser, G.D.1    Wang, T.T.2    Hoffman, N.E.3    Yang, S.F.4    Liu, H.W.5    Walsh, C.T.6
  • 36
    • 0014185798 scopus 로고
    • β-Cyanoalanine, an inhibitor of rat liver cystathionase
    • Pfeffer, M., and Ressler, C. (1967). β-Cyanoalanine, an inhibitor of rat liver cystathionase. Biochem. Pharmacol. 16, 2299-2308.
    • (1967) Biochem. Pharmacol. , vol.16 , pp. 2299-2308
    • Pfeffer, M.1    Ressler, C.2
  • 37
    • 55049110692 scopus 로고    scopus 로고
    • Primary or secondary? Versatile nitrilases in plant metabolism
    • Piotrowski, M. (2008). Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry. 69, 2655-2667.
    • (2008) Phytochemistry. , vol.69 , pp. 2655-2667
    • Piotrowski, M.1
  • 38
    • 33745189662 scopus 로고    scopus 로고
    • Cyanide metabolism in higher plants: Cyanoalanine hydratase is a NIT4 homolog
    • Piotrowski, M., and Volmer, J.J. (2006). Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog. Plant Mol. Biol. 61, 111-122.
    • (2006) Plant Mol. Biol. , vol.61 , pp. 111-122
    • Piotrowski, M.1    Volmer, J.J.2
  • 39
    • 0035951786 scopus 로고    scopus 로고
    • The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase
    • Piotrowski, M., Schönfelder, S., and Weiler, E.W. (2001). The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. J. Biol. Chem. 276, 2616-2621.
    • (2001) J. Biol. Chem. , vol.276 , pp. 2616-2621
    • Piotrowski, M.1    Schönfelder, S.2    Weiler, E.W.3
  • 40
    • 44349167610 scopus 로고    scopus 로고
    • Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere
    • Rudrappa, T., Splaine, R.E., Biedrzycki, M.L., and Bais, H.P. (2008). Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere. PloS One. 3, e2073.
    • (2008) PloS One. , vol.3
    • Rudrappa, T.1    Splaine, R.E.2    Biedrzycki, M.L.3    Bais, H.P.4
  • 41
    • 33751282207 scopus 로고    scopus 로고
    • Cyanide action in plants-from toxic to regulatory
    • Siegień, I., and Bogatek, R. (2006). Cyanide action in plants-from toxic to regulatory. Acta Physiol. Plant. 28, 483-497.
    • (2006) Acta Physiol. Plant. , vol.28 , pp. 483-497
    • Siegień, I.1    Bogatek, R.2
  • 42
    • 0040388404 scopus 로고
    • Role of asparagine in the photorespiratory nitrogen metabolism of pea leaves
    • Ta, T.C., Joy, K.W., and Ireland, R.J. (1985). Role of asparagine in the photorespiratory nitrogen metabolism of pea leaves. Plant Physiol. 78, 334-337.
    • (1985) Plant Physiol. , vol.78 , pp. 334-337
    • Ta, T.C.1    Joy, K.W.2    Ireland, R.J.3
  • 43
    • 0029608638 scopus 로고
    • Ethylene is a positive regulator of root hair development in Arabidopsis thaliana
    • Tanimoto, M., Roberts, K., and Dolan, L. (1995). Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J. 8, 943-948.
    • (1995) Plant J. , vol.8 , pp. 943-948
    • Tanimoto, M.1    Roberts, K.2    Dolan, L.3
  • 44
    • 0014775371 scopus 로고
    • Asparagine biosynthesis by cotton roots
    • Ting, I.P., and Zschoche, W.C. (1970). Asparagine biosynthesis by cotton roots. Plant Physiol. 45, 429-434.
    • (1970) Plant Physiol. , vol.45 , pp. 429-434
    • Ting, I.P.1    Zschoche, W.C.2
  • 45
    • 78149489254 scopus 로고    scopus 로고
    • Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root
    • Tsukagoshi, H., Busch, W., and Benfey, P.N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 143, 606-616.
    • (2010) Cell. , vol.143 , pp. 606-616
    • Tsukagoshi, H.1    Busch, W.2    Benfey, P.N.3
  • 46
    • 78649854044 scopus 로고    scopus 로고
    • New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants
    • Tzin, V., and Galili, G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant. 3, 956-972.
    • (2010) Mol. Plant. , vol.3 , pp. 956-972
    • Tzin, V.1    Galili, G.2
  • 47
    • 34147129629 scopus 로고    scopus 로고
    • Polarographic assays of respiratory chain complex activity
    • Villani, G., and Attardi, G. (2007). Polarographic assays of respiratory chain complex activity. Methods Cell Biol. 80, 121-133.
    • (2007) Methods Cell Biol. , vol.80 , pp. 121-133
    • Villani, G.1    Attardi, G.2
  • 48
    • 42649142030 scopus 로고    scopus 로고
    • Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1
    • Voet-van-Vormizeele, J., and Groth, G. (2008). Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. Mol. Plant. 1, 380-387.
    • (2008) Mol. Plant. , vol.1 , pp. 380-387
    • Voet-Van-Vormizeele, J.1    Groth, G.2
  • 49
    • 0842343470 scopus 로고    scopus 로고
    • 13C flux analysis: Mass isotope correction, data consistency checking, and precursor relationships
    • 13C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol. Bioeng. 85, 259-268.
    • (2004) Biotechnol. Bioeng. , vol.85 , pp. 259-268
    • Wahl, S.A.1    Dauner, M.2    Wiechert, W.3
  • 50
    • 0034121969 scopus 로고    scopus 로고
    • Cysteine synthase (O-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase
    • Warrilow, A.G.S., and Hawkesford, M.J. (2000). Cysteine synthase (O-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. J. Exp. Bot. 51, 985-993.
    • (2000) J. Exp. Bot. , vol.51 , pp. 985-993
    • Warrilow, A.G.S.1    Hawkesford, M.J.2
  • 51
    • 40749148526 scopus 로고    scopus 로고
    • Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis
    • Watanabe, M., Kusano, M., Oikawa, A., Fukushima, A., Noji, M., and Saito, K. (2008). Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. Plant Physiol. 146, 310-320.
    • (2008) Plant Physiol. , vol.146 , pp. 310-320
    • Watanabe, M.1    Kusano, M.2    Oikawa, A.3    Fukushima, A.4    Noji, M.5    Saito, K.6
  • 52
    • 0014669229 scopus 로고
    • Inhibition of ribulose diphosphate carboxylase by cyanide
    • Wishnick, M., and Lane, M.D. (1969). Inhibition of ribulose diphosphate carboxylase by cyanide. J. Biol. Chem. 244, 55-59.
    • (1969) J. Biol. Chem. , vol.244 , pp. 55-59
    • Wishnick, M.1    Lane, M.D.2
  • 53
    • 84861692971 scopus 로고    scopus 로고
    • On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings
    • Yu, X., Lu, P., and Yu, Z. (2012). On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings. Ecotoxicology. 21, 548-556.
    • (2012) Ecotoxicology. , vol.21 , pp. 548-556
    • Yu, X.1    Lu, P.2    Yu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.