메뉴 건너뛰기




Volumn 63, Issue , 2013, Pages 599-607

Surface finish monitoring in taper turning CNC using artificial neural network and multiple regression methods

Author keywords

Artificial neural networks; Monitoring; Regression model; Surface finish; Turning CNC

Indexed keywords


EID: 84891681180     PISSN: 18777058     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.proeng.2013.08.245     Document Type: Conference Paper
Times cited : (20)

References (10)
  • 1
    • 79151483285 scopus 로고    scopus 로고
    • Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method
    • Asiltürk, I., Çunkas, M., 2011, Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method, Expert Systems with Applications 38 5826-5832.
    • (2011) Expert Systems with Applications , vol.38 , pp. 5826-5832
    • Asiltürk, I.1    Çunkas, M.2
  • 4
    • 84873717296 scopus 로고    scopus 로고
    • On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations
    • Hessainia, Z., et all., 2013, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations, Measurement 46, 1671-1681.
    • (2013) Measurement , vol.46 , pp. 1671-1681
    • Hessainia, Z.1
  • 5
    • 62949132164 scopus 로고    scopus 로고
    • Prediction and control of surface roughness in CNC lathe using artificial neural network
    • Karayel, D., 2009 Prediction and control of surface roughness in CNC lathe using artificial neural network, Journal of Materials Processing Technology 209 3125-3137.
    • (2009) Journal of Materials Processing Technology , vol.209 , pp. 3125-3137
    • Karayel, D.1
  • 6
    • 12344328482 scopus 로고    scopus 로고
    • Machining process monitoring and control: The state-of-the-art
    • Liang, S.Y., Hecker, R.L., Landers, R.G., 2004 Machining Process Monitoring and Control: The State-of-the-Art, Transactions of the ASME 126 (2004) 297-310.
    • (2004) Transactions of the ASME , vol.126 , Issue.2004 , pp. 297-310
    • Liang, S.Y.1    Hecker, R.L.2    Landers, R.G.3
  • 7
    • 84879191464 scopus 로고    scopus 로고
    • Sensor fusion for tool state classification in nickel superalloy high performance cutting
    • Segreto, T., Simeone, A., Teti, R., 2012, Sensor Fusion for Tool State Classification in Nickel Superalloy High Performance Cutting, Procedia CIRP 1, 593-598.
    • (2012) Procedia CIRP , vol.1 , pp. 593-598
    • Segreto, T.1    Simeone, A.2    Teti, R.3
  • 8
    • 34047157842 scopus 로고    scopus 로고
    • Development of an online machining process monitoring system: Application in hard turning
    • Shi, D., Gindy, N.N., 2007, Development of an online machining process monitoring system: Application in hard turning, Sensors and Actuators A 135, 405-414.
    • (2007) Sensors and Actuators A , vol.135 , pp. 405-414
    • Shi, D.1    Gindy, N.N.2
  • 10
    • 84870240912 scopus 로고    scopus 로고
    • Process prediction of surface roughness in turning of ti-6Al-4V alloy using cutting parameters and vibration signals
    • Upadhyay, V., Jain, P.K., MehtaIn, N.K., 2013, Process prediction of surface roughness in turning of Ti-6Al-4V alloy using cutting parameters and vibration signals, Measurement 46, 154-160.
    • (2013) Measurement , vol.46 , pp. 154-160
    • Upadhyay, V.1    Jain, P.K.2    MehtaIn, N.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.