메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Neural-Based Orthogonal Data Fitting: The EXIN Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84891584542     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470638286     Document Type: Book
Times cited : (23)

References (202)
  • 1
    • 0023248905 scopus 로고
    • Constrained total leastsquares
    • T.J. Abatzoglou and J.M. Mendel. Constrained total leastsquares. Proc. ICASSP, pp. 1485-1488, 1987.
    • (1987) Proc. ICASSP , pp. 1485-1488
    • Abatzoglou, T.J.1    Mendel, J.M.2
  • 2
    • 0026151452 scopus 로고
    • The constrained total least squares technique and its application to harmonic superresolution
    • May
    • T.J. Abatzoglou, J.M. Mendel, and G.A. Harada. The constrained total least squares technique and its application to harmonic superresolution. IEEE Trans. Signal Process., 39(5):1070-1087, May 1991.
    • (1991) IEEE Trans. Signal Process. , vol.39 , Issue.5 , pp. 1070-1087
    • Abatzoglou, T.J.1    Mendel, J.M.2    Harada, G.A.3
  • 3
    • 0038100846 scopus 로고
    • Aproblem in least squares
    • R.J. Adcock. Aproblem in least squares. Analyst, 5:53-54, 1878.
    • (1878) Analyst , vol.5 , pp. 53-54
    • Adcock, R.J.1
  • 4
    • 0024774330 scopus 로고
    • Neural networks andprincipal component analysis: learning from examples without local minima
    • P. Baldi and K. Hornik. Neural networks andprincipal component analysis: learning from examples without local minima. Neural Netw., 2:52-58, 1989.
    • (1989) Neural Netw. , vol.2 , pp. 52-58
    • Baldi, P.1    Hornik, K.2
  • 5
    • 0023364664 scopus 로고
    • Comparisonof optimum and linear prediction technique for clutter cancellation
    • S. Barbarossa, E. Daddio, and G. Galati. Comparisonof optimum and linear prediction technique for clutter cancellation. IEE Proc. F, 134:277-282, 1987.
    • (1987) IEE Proc. F , vol.134 , pp. 277-282
    • Barbarossa, S.1    Daddio, E.2    Galati, G.3
  • 6
    • 0026835298 scopus 로고
    • Optimizationfor training neural nets
    • E. Barnard. Optimizationfor training neural nets. IEEE Trans. Neural Netw., 3(2):232-240, 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.2 , pp. 232-240
    • Barnard, E.1
  • 7
    • 0001209372 scopus 로고
    • Acceleratedbackpropagation learning: two optimization methods
    • R. Battiti. Acceleratedbackpropagation learning: two optimization methods. Complex Syst., 3:331-342, 1989.
    • (1989) Complex Syst. , vol.3 , pp. 331-342
    • Battiti, R.1
  • 8
    • 0023399552 scopus 로고
    • Structuralidentification of multivariable systems by the eigenvector method
    • S. Beghelli, R.P. Guidorzi, and U. Soverini. Structuralidentification of multivariable systems by the eigenvector method. Int. J. Control, 46:671-678, 1987.
    • (1987) Int. J. Control , vol.46 , pp. 671-678
    • Beghelli, S.1    Guidorzi, R.P.2    Soverini, U.3
  • 9
    • 33746577251 scopus 로고    scopus 로고
    • MatrixMathematics
    • Princeton University Press, Princeton, NJ
    • D.S. Bernstein. MatrixMathematics. Princeton University Press, Princeton, NJ, 2005.
    • (2005)
    • Bernstein, D.S.1
  • 10
    • 26444485236 scopus 로고
    • NeuralNetwork for Pattern Recognition
    • Clarendon Press, Oxford, UK
    • C.M. Bishop. NeuralNetwork for Pattern Recognition. Clarendon Press, Oxford, UK, 1995.
    • (1995)
    • Bishop, C.M.1
  • 12
    • 0348045155 scopus 로고
    • Multivariateorthogonal regression in astronomy
    • Sept.
    • R. Branham. Multivariateorthogonal regression in astronomy. Celestial Mech. Dyn. Astron., 61(3):239-251, Sept. 1995.
    • (1995) Celestial Mech. Dyn. Astron. , vol.61 , Issue.3 , pp. 239-251
    • Branham, R.1
  • 13
    • 0001423485 scopus 로고
    • A tool forthe analysis of quasi-Newton methods with application to unconstrained minimization
    • June
    • R.H. Byrd and J. Nocedal. A tool forthe analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal., 26(3):727-739, June 1989.
    • (1989) SIAM J. Numer. Anal. , vol.26 , Issue.3 , pp. 727-739
    • Byrd, R.H.1    Nocedal, J.2
  • 14
    • 0004156107 scopus 로고
    • Eigenvaluesof Matrices
    • Wiley, New York
    • F. Chatelin. Eigenvaluesof Matrices. Wiley, New York, 1993.
    • (1993)
    • Chatelin, F.1
  • 15
    • 0024903263 scopus 로고
    • Principalcomponent analysis by gradient descent on a constrained linear Hebbian cell
    • Washington, DC, IEEE Press, New York
    • Y. Chauvin. Principalcomponent analysis by gradient descent on a constrained linear Hebbian cell. Proceedings of the IEEE International Conference on Neural Networks, Washington, DC, Vol. I, pp. 373-380. IEEE Press, New York, 1989.
    • (1989) Proceedings of the IEEE International Conference on Neural Networks , vol.I , pp. 373-380
    • Chauvin, Y.1
  • 16
    • 84941606796 scopus 로고
    • Adaptive distributed orthogonalizationprocessing for principal component analysis
    • In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
    • H. Chen and R.W. Liu. Adaptive distributed orthogonalizationprocessing for principal component analysis. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1992.
    • (1992)
    • Chen, H.1    Liu, R.W.2
  • 17
    • 0028381175 scopus 로고
    • An on-line unsupervised learning machine for adaptive extraction
    • H. Chen and R.W. Liu. An on-line unsupervised learning machine for adaptive extraction. IEEE Trans. Circuits and Syst. II, 41:87-98, 1994.
    • (1994) IEEE Trans. Circuits and Syst. II , vol.41 , pp. 87-98
    • Chen, H.1    Liu, R.W.2
  • 18
    • 0345627997 scopus 로고    scopus 로고
    • Aunified algorithm for principal and minor components extraction
    • T. Chen, S. Amari, and Q. Lin. Aunified algorithm for principal and minor components extraction. Neural Netw., 11:385-390, 1998.
    • (1998) Neural Netw. , vol.11 , pp. 385-390
    • Chen, T.1    Amari, S.2    Lin, Q.3
  • 19
    • 33846693416 scopus 로고    scopus 로고
    • Applicationof the total least squares method to the determination of preliminary orbit
    • Oct.-Dec.
    • W. Chen, J. Zhang, J. Ma, and B. Lu. Applicationof the total least squares method to the determination of preliminary orbit. Chin. Astron. Astrophys., 30(4):431-436, Oct.-Dec. 2006.
    • (2006) Chin. Astron. Astrophys. , vol.30 , Issue.4 , pp. 431-436
    • Chen, W.1    Zhang, J.2    Ma, J.3    Lu, B.4
  • 20
    • 70350329494 scopus 로고
    • Robust Errors-in-Variables Regression. Technical Report 179. Programs in Mathematical Sciences
    • University of Texas, Dallas, TX
    • C.L. Cheng and J.W. Van Ness. Robust Errors-in-Variables Regression. Technical Report 179. Programs in Mathematical Sciences. University of Texas, Dallas, TX, 1987.
    • (1987)
    • Cheng, C.L.1    Van Ness, J.W.2
  • 21
    • 0003720685 scopus 로고
    • Neural Networks forOptimization and Signal Processing
    • Wiley, New York
    • A. Cichocki and R. Unbehauen. Neural Networks forOptimization and Signal Processing. Wiley, New York, 1993.
    • (1993)
    • Cichocki, A.1    Unbehauen, R.2
  • 22
    • 0028539714 scopus 로고
    • Simplified neural networksfor solving linear least squares and total least squares problems in real time
    • Nov.
    • A. Cichocki and R. Unbehauen. Simplified neural networksfor solving linear least squares and total least squares problems in real time. IEEE Trans. Neural Netw., 5(6):910-923, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 910-923
    • Cichocki, A.1    Unbehauen, R.2
  • 23
    • 0023383912 scopus 로고
    • Limited-precision effects in adaptive filtering
    • July
    • J.M. Cioffi. Limited-precision effects in adaptive filtering. IEEE Trans. Circuits Syst., 34(7):821-833, July 1987.
    • (1987) IEEE Trans. Circuits Syst. , vol.34 , Issue.7 , pp. 821-833
    • Cioffi, J.M.1
  • 24
    • 0003460508 scopus 로고    scopus 로고
    • ANeural Approach to the Structure from Motion Problem
    • Ph.D. dissertation, LIS INPG Grenoble, Dec.
    • G. Cirrincione. ANeural Approach to the Structure from Motion Problem. Ph.D. dissertation, LIS INPG Grenoble, Dec. 1998.
    • (1998)
    • Cirrincione, G.1
  • 25
    • 84886567074 scopus 로고    scopus 로고
    • TLSand constrained TLS neural networks in computer vision
    • G. Cirrincione. TLSand constrained TLS neural networks in computer vision. 3rd InternationalWorkshop on TLS and Errors-in-Variables Modeling, Leuven/Heverlee, Belgium, Aug. 27-29, 2001.
    • Cirrincione, G.1
  • 26
    • 84886508828 scopus 로고    scopus 로고
    • Constrainedtotal least squares for the essential/fundamental matrix estimation, a neural approach
    • submitted in
    • G. Cirrincione. Constrainedtotal least squares for the essential/fundamental matrix estimation, a neural approach. Int. J. Comput. Vision (submitted in 2010).
    • (2010) Int. J. Comput. Vision
    • Cirrincione, G.1
  • 27
    • 85054395460 scopus 로고    scopus 로고
    • Linear system identificationusing the TLS EXIN neuron
    • Marseille, France, Mar.
    • G. Cirrincione and M. Cirrincione. Linear system identificationusing the TLS EXIN neuron. NEURAP 98, Marseille, France, Mar. 1998.
    • (1998) NEURAP 98
    • Cirrincione, G.1    Cirrincione, M.2
  • 29
    • 2242459870 scopus 로고    scopus 로고
    • A robust neuralapproach for the estimation of the essential parameters in computer vision
    • Sept.
    • G. Cirrincione and M. Cirrincione. A robust neuralapproach for the estimation of the essential parameters in computer vision. Int. J. Artif. Intell. Tools, 8(3), Sept. 1999.
    • (1999) Int. J. Artif. Intell. Tools , vol.8 , Issue.3
    • Cirrincione, G.1    Cirrincione, M.2
  • 32
    • 84886521549 scopus 로고    scopus 로고
    • The essential/fundamental matrix estimation as a constrained total least squares problem: Theory
    • Atlantic City, NJ, Jan.-Feb
    • G. Cirrincione, M. Cirrincione, and S. Van Huffel. The essential/fundamental matrix estimation as a constrained total least squares problem: Theory. CVPRIP 2000, Atlantic City, NJ, Jan.-Feb. 2000.
    • (2000) CVPRIP 2000
    • Cirrincione, G.1    Cirrincione, M.2    Van Huffel, S.3
  • 33
    • 0033726001 scopus 로고    scopus 로고
    • The GETLS EXINneuron for linear regression
    • IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference, July 24-27
    • G. Cirrincione, M. Cirrincione, and S. Van Huffel. The GETLS EXINneuron for linear regression. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference, July 24-27, 2000. Neural Netw., 6:285-289.
    • (2000) Neural Netw. , vol.6 , pp. 285-289
    • Cirrincione, G.1    Cirrincione, M.2    Van Huffel, S.3
  • 34
  • 36
    • 0032833098 scopus 로고    scopus 로고
    • Linear system identificationby using the TLS EXIN neuron
    • Oct.
    • G. Cirrincione and M. Cirrincione. Linear system identificationby using the TLS EXIN neuron. Neurocomputing, 28(1-3):53-74, Oct. 1999.
    • (1999) Neurocomputing , vol.28 , Issue.1-3 , pp. 53-74
    • Cirrincione, G.1    Cirrincione, M.2
  • 39
    • 10944233999 scopus 로고    scopus 로고
    • Anadaptive speed observer based on a new total least-squares neuron for induction machine drives
    • Conference Record of the 2004 IEEE Industry Applications Conference, 2004, Oct. 3-7
    • M. Cirrincione, M. Pucci, G. Cirrincione, and G.A. Capolino. Anadaptive speed observer based on a new total least-squares neuron for induction machine drives. Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting, Vol. 2, pp. 1350-1361, Oct. 3-7, 2004.
    • (2004) 39th IAS Annual Meeting , vol.2 , pp. 1350-1361
    • Cirrincione, M.1    Pucci, M.2    Cirrincione, G.3    Capolino, G.A.4
  • 41
    • 42549154891 scopus 로고    scopus 로고
    • Sensorlesscontrol of induction motor drives by new linear neural techniques
    • Aug.
    • M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino. Sensorlesscontrol of induction motor drives by new linear neural techniques. 12th International Power Electronics and Motion Control Conference, pp. 1820-1829, Aug. 2006.
    • (2006) , pp. 1820-1829
    • Cirrincione, M.1    Pucci, M.2    Cirrincione, G.3    Capolino, G.-A.4
  • 42
    • 0036443085 scopus 로고    scopus 로고
    • Anew experimental application of least-squares techniques for the estimation of the induction motor parameters
    • In Conference Record of the Industry Applications Conference, 2002, Oct. 13-18
    • M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino. Anew experimental application of least-squares techniques for the estimation of the induction motor parameters. In Conference Record of the Industry Applications Conference, 2002, 37th IAS Annual Meeting, Vol. 2, pp. 1171-1180, Oct. 13-18, 2002.
    • (2002) 37th IAS Annual Meeting , vol.2 , pp. 1171-1180
    • Cirrincione, M.1    Pucci, M.2    Cirrincione, G.3    Capolino, G.-A.4
  • 43
    • 0242369006 scopus 로고    scopus 로고
    • Anew experimental application of least-squares techniques for the estimation of the induction motor parameters
    • Sept.-Oct.
    • M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino. Anew experimental application of least-squares techniques for the estimation of the induction motor parameters. IEEE Trans. Ind. Appl., 39(5):1247-1256, Sept.-Oct. 2003.
    • (2003) IEEE Trans. Ind. Appl. , vol.39 , Issue.5 , pp. 1247-1256
    • Cirrincione, M.1    Pucci, M.2    Cirrincione, G.3    Capolino, G.-A.4
  • 44
    • 3242886345 scopus 로고    scopus 로고
    • Anew TLS-based MRAS speed estimation with adaptive integration for high performance induction motor drives
    • June-Aug.
    • M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino. Anew TLS-based MRAS speed estimation with adaptive integration for high performance induction motor drives. IEEE Trans. Ind. Appl., 40(4):1116-1137, June-Aug. 2004.
    • (2004) IEEE Trans. Ind. Appl. , vol.40 , Issue.4 , pp. 1116-1137
    • Cirrincione, M.1    Pucci, M.2    Cirrincione, G.3    Capolino, G.-A.4
  • 45
    • 32144455215 scopus 로고    scopus 로고
    • Anadaptive speed observer based on a new total least-squares neuron for induction machine drives
    • Jan.-Feb.
    • M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino. Anadaptive speed observer based on a new total least-squares neuron for induction machine drives. IEEE Trans. Ind. Appl., 42(1):89-104, Jan.-Feb. 2006.
    • (2006) IEEE Trans. Ind. Appl. , vol.42 , Issue.1 , pp. 89-104
    • Cirrincione, M.1    Pucci, M.2    Cirrincione, G.3    Capolino, G.-A.4
  • 46
    • 33947379592 scopus 로고    scopus 로고
    • Sensorlesscontrol of induction machines by a new neural algorithm: the TLS EXIN neuron
    • Feb.
    • M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino. Sensorlesscontrol of induction machines by a new neural algorithm: the TLS EXIN neuron. IEEE Trans. Ind. Electron., 54(1):127-149, Feb. 2007.
    • (2007) IEEE Trans. Ind. Electron. , vol.54 , Issue.1 , pp. 127-149
    • Cirrincione, M.1    Pucci, M.2    Cirrincione, G.3    Capolino, G.-A.4
  • 47
    • 33947414845 scopus 로고    scopus 로고
    • Sensorlesscontrol of induction motors by reduced order observer with MCA EXIN+ based adaptive speed estimation
    • Feb.
    • M. Cirrincione, M. Pucci, G. Cirrincione, and G.-A. Capolino. Sensorlesscontrol of induction motors by reduced order observer with MCA EXIN+ based adaptive speed estimation. IEEE Trans. Ind. Electron., 54(1):150-166, Feb. 2007.
    • (2007) IEEE Trans. Ind. Electron. , vol.54 , Issue.1 , pp. 150-166
    • Cirrincione, M.1    Pucci, M.2    Cirrincione, G.3    Capolino, G.-A.4
  • 48
    • 0025474239 scopus 로고
    • Tracking a fewextreme singular values and vectors in signal processing
    • P. Comon and G.H. Golub. Tracking a fewextreme singular values and vectors in signal processing. Proc. IEEE, 78:1327-1343, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1327-1343
    • Comon, P.1    Golub, G.H.2
  • 49
    • 0001298583 scopus 로고
    • Automatic learning ratemaximization by on-line estimation of the Hessian's eigenvectors
    • In S.J. Hanson, J.D. Cowan, and C.L. Giles, eds., Morgan Kaufmann, San Mateo, CA
    • Y. Le Cun, P.Y. Simard, and B. Pearlmutter. Automatic learning ratemaximization by on-line estimation of the Hessian's eigenvectors. In S.J. Hanson, J.D. Cowan, and C.L. Giles, eds., Advances in Neural Information Processing Systems, Vol. 5, pp. 156-163. Morgan Kaufmann, San Mateo, CA, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 156-163
    • Le Cun, Y.1    Simard, P.Y.2    Pearlmutter, B.3
  • 50
    • 0028377502 scopus 로고
    • Anefficient recursive total least squares algorithm for FIR adaptive filtering
    • C.E. Davila. Anefficient recursive total least squares algorithm for FIR adaptive filtering. IEEE Trans. Signal Process., 42:268-280, 1994.
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 268-280
    • Davila, C.E.1
  • 51
    • 0027287116 scopus 로고
    • The data leastsquares problem and channel equalization
    • Jan.
    • R.D. Degroat and E. Dowling. The data leastsquares problem and channel equalization. IEEE Trans. Signal Process., 41(1):407-411, Jan. 1993.
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.1 , pp. 407-411
    • Degroat, R.D.1    Dowling, E.2
  • 54
    • 0000802374 scopus 로고
    • The approximation ofone matrix by another of lower rank
    • G. Eckart and G. Young. The approximation ofone matrix by another of lower rank. Psychometrica, 1:211-218, 1936.
    • (1936) Psychometrica , vol.1 , pp. 211-218
    • Eckart, G.1    Young, G.2
  • 55
    • 0003000735 scopus 로고
    • Faster-learning variations on back propagation: an empirical study
    • In D. Touretzky, G.E. Hinton, and T.J. Sejnowski, eds., Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann, San Mateo, CA
    • S.E. Fahlman. Faster-learning variations on back propagation: an empirical study. In D. Touretzky, G.E. Hinton, and T.J. Sejnowski, eds., Proceedings of the 1988 Connectionist Models Summer School, pp. 38-51. Morgan Kaufmann, San Mateo, CA, 1988.
    • (1988) , pp. 38-51
    • Fahlman, S.E.1
  • 56
    • 0032142099 scopus 로고    scopus 로고
    • Total least meansquares algorithm
    • Aug.
    • D.Z. Feng, Z. Bao, and L.C. Jiao. Total least meansquares algorithm. IEEE Trans. Signal Process., 46(8):2122-2130, Aug. 1998.
    • (1998) IEEE Trans. Signal Process. , vol.46 , Issue.8 , pp. 2122-2130
    • Feng, D.Z.1    Bao, Z.2    Jiao, L.C.3
  • 57
    • 0021853670 scopus 로고
    • Identification of linearsystems with input and output noise: the Koopmans-Levin method
    • K.V. Fernando and H. Nicholson. Identification of linearsystems with input and output noise: the Koopmans-Levin method. IEE Proc. D, 132:30-36, 1985.
    • (1985) IEE Proc. D , vol.132 , pp. 30-36
    • Fernando, K.V.1    Nicholson, H.2
  • 58
    • 0002252083 scopus 로고
    • Matrix analysis ofmetamorphic mineral assemblages and reactions
    • G.W. Fisher. Matrix analysis ofmetamorphic mineral assemblages and reactions. Contrib. Mineral. Petrol., 102:69-77, 1989.
    • (1989) Contrib. Mineral. Petrol. , vol.102 , pp. 69-77
    • Fisher, G.W.1
  • 59
    • 0003768769 scopus 로고
    • Practical Methods ofOptimization, 2nd ed
    • Wiley, New York
    • R. Fletcher. Practical Methods ofOptimization, 2nd ed. Wiley, New York, 1987.
    • (1987)
    • Fletcher, R.1
  • 60
    • 20444438752 scopus 로고
    • Error Measurement Models
    • Wiley, New York
    • W.A. Fuller. Error Measurement Models. Wiley, New York, 1987.
    • (1987)
    • Fuller, W.A.1
  • 61
    • 84886454670 scopus 로고    scopus 로고
    • An iteratively re-weighted total least-squares algorithm for different variances in observations and data
    • In V.P. Ciarlini, M.G. Cox, E. Filipe, F. Pavese, and D. Richter, eds., Advanced Mathematical and Computational Tools in Metrology, World Scientific, Hackensack, NJ
    • G.G. Cirrincione, S. Van Huffel, A. Premoli, and M.L. Rastello. An iteratively re-weighted total least-squares algorithm for different variances in observations and data. In V.P. Ciarlini, M.G. Cox, E. Filipe, F. Pavese, and D. Richter, eds., Advanced Mathematical and Computational Tools in Metrology, pp. 78-86. World Scientific, Hackensack, NJ, 2001.
    • (2001) , pp. 78-86
    • Cirrincione, G.G.1    Van Huffel, S.2    Premoli, A.3    Rastello, M.L.4
  • 62
    • 17444394099 scopus 로고
    • Consistency of regressionestimates when some variables are subject to error
    • P.P. Gallo. Consistency of regressionestimates when some variables are subject to error. Commun. Stat. Theory Methods, 11:973-983, 1982.
    • (1982) Commun. Stat. Theory Methods , vol.11 , pp. 973-983
    • Gallo, P.P.1
  • 63
    • 0026821218 scopus 로고
    • Learning algorithm fortotal least-squares adaptive signal processing
    • Feb.
    • K. Gao, M.O. Ahmad, and M.N. Swamy. Learning algorithm fortotal least-squares adaptive signal processing. Electron. Lett., 28(4):430-432, Feb. 1992.
    • (1992) Electron. Lett. , vol.28 , Issue.4 , pp. 430-432
    • Gao, K.1    Ahmad, M.O.2    Swamy, M.N.3
  • 64
    • 0028547542 scopus 로고
    • A constrained anti-Hebbian learning algorithm for total least-squares estimation with applications to adaptive FIR and IIR filtering
    • Nov.
    • K. Gao, M.O. Ahmad, and M.N. Swamy. A constrained anti-Hebbian learning algorithm for total least-squares estimation with applications to adaptive FIR and IIR filtering. IEEE Trans. Circuits Syst.-II, 41(11):718-729, Nov. 1994.
    • (1994) IEEE Trans. Circuits Syst.-II , vol.41 , Issue.11 , pp. 718-729
    • Gao, K.1    Ahmad, M.O.2    Swamy, M.N.3
  • 65
    • 0023513717 scopus 로고
    • Learning, invariance, and generalization in high order neural networks
    • C.L. Giles and T. Maxwell. Learning, invariance, and generalization in high order neural networks. Appl. Opt., 26:4972-4978, 1987.
    • (1987) Appl. Opt. , vol.26 , pp. 4972-4978
    • Giles, C.L.1    Maxwell, T.2
  • 66
    • 0004240547 scopus 로고
    • Practical Optimization
    • Academic Press, New York
    • P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, New York, 1980.
    • (1980)
    • Gill, P.E.1    Murray, W.2    Wright, M.H.3
  • 67
    • 0015601874 scopus 로고
    • On the designof gradient algorithms for digitally implemented adaptive filters
    • Mar.
    • R.D. Gitlin, J.E. Mazo, and M.G. Taylor. On the designof gradient algorithms for digitally implemented adaptive filters. IEEE Trans. Circuits Syst., 20, Mar. 1973.
    • (1973) IEEE Trans. Circuits Syst. , vol.20
    • Gitlin, R.D.1    Mazo, J.E.2    Taylor, M.G.3
  • 68
    • 0020191809 scopus 로고
    • The tap-leakage algorithm: an algorithm for the stable operation of a digitally implemented, fractionally adaptive spaced equalizer
    • Oct.
    • R.D. Gitlin, H.C. Meadors, and S.B. Weinstein. The tap-leakage algorithm: an algorithm for the stable operation of a digitally implemented, fractionally adaptive spaced equalizer. Bell Syst. Tech. J., 61(8):1817-1839, Oct. 1982.
    • (1982) Bell Syst. Tech. J. , vol.61 , Issue.8 , pp. 1817-1839
    • Gitlin, R.D.1    Meadors, H.C.2    Weinstein, S.B.3
  • 69
    • 84886545040 scopus 로고
    • Calculation and simulationin errors-in-variables regression problems
    • Mimeograph Ser. 78-5. Statistics Department, Purdue University, West Lafayette, IN
    • L.J. Gleser. Calculation and simulationin errors-in-variables regression problems. Mimeograph Ser. 78-5. Statistics Department, Purdue University, West Lafayette, IN, 1978.
    • (1978)
    • Gleser, L.J.1
  • 70
    • 0002500224 scopus 로고
    • Estimation in amultivariate "errors in variables" regression model: large sample results
    • L.J. Gleser. Estimation in amultivariate "errors in variables" regression model: large sample results. Ann. Stat., 9:24-44, 1981.
    • (1981) Ann. Stat. , vol.9 , pp. 24-44
    • Gleser, L.J.1
  • 71
    • 0001070999 scopus 로고
    • Some modified eigenvalueproblems
    • G.H. Golub. Some modified eigenvalueproblems. SIAM Rev., 15:318-344, 1973.
    • (1973) SIAM Rev. , vol.15 , pp. 318-344
    • Golub, G.H.1
  • 72
    • 45949115772 scopus 로고
    • A generalization ofthe Eckart-Young-Mirsky matrix approximation theorem
    • G.H. Golub, A. Hoffman, and G.W. Stewart. A generalization ofthe Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra Appl., 88-89: 322-327, 1987.
    • (1987) Linear Algebra Appl. , vol.88 , Issue.89 , pp. 322-327
    • Golub, G.H.1    Hoffman, A.2    Stewart, G.W.3
  • 73
    • 0003072966 scopus 로고
    • Extensions and usesof the variable projection algorithm for solving nonlinear least squares problems
    • Proceedings of the 1979 Army Numerical Analysis and Computers Conference, White Sands Missile Range, White Sands, NM
    • G.H. Golub and R.J. Leveque. Extensions and usesof the variable projection algorithm for solving nonlinear least squares problems. Proceedings of the 1979 Army Numerical Analysis and Computers Conference, White Sands Missile Range, White Sands, NM, pp. 1-12, 1979.
    • (1979) , pp. 1-12
    • Golub, G.H.1    Leveque, R.J.2
  • 74
    • 0000333571 scopus 로고
    • An analysis ofthe total least squares problem
    • G.H. Golub and C.F. Van Loan. An analysis ofthe total least squares problem. SIAM J. Numer. Anal., pp. 883-893, 1980.
    • (1980) SIAM J. Numer. Anal. , pp. 883-893
    • Golub, G.H.1    Van Loan, C.F.2
  • 75
    • 0004236492 scopus 로고
    • Matrix Computations
    • 2nd ed. Johns Hopkins University Press, Baltimore
    • G.H. Golub and C.F. Van Loan. Matrix Computations, 2nd ed. Johns Hopkins University Press, Baltimore, 1989.
    • (1989)
    • Golub, G.H.1    Van Loan, C.F.2
  • 76
    • 33747738463 scopus 로고
    • Singular value decompositionand least squares solutions
    • G.H. Golub and C. Reinsch. Singular value decompositionand least squares solutions. Numer. Math., 14:403-420, 1970.
    • (1970) Numer. Math. , vol.14 , pp. 403-420
    • Golub, G.H.1    Reinsch, C.2
  • 77
    • 0020704956 scopus 로고
    • Adaptive array processing, a tutorial
    • J.W. Griffiths. Adaptive array processing, a tutorial. IEE Proc. F, 130:3-10, 1983.
    • (1983) IEE Proc. F , vol.130 , pp. 3-10
    • Griffiths, J.W.1
  • 78
    • 0023157045 scopus 로고
    • Gradient-type algorithms for partial singular value decomposition
    • Jan.
    • R. Haimi-Cohen and A. Cohen. Gradient-type algorithms for partial singular value decomposition. IEEE Trans. Pattern Anal.Machine Intell., 9(1):137-142, Jan. 1987.
    • (1987) IEEE Trans. Pattern Anal.Machine Intell. , vol.9 , Issue.1 , pp. 137-142
    • Haimi-cohen, R.1    Cohen, A.2
  • 79
    • 2842584377 scopus 로고
    • Total least squaressolutions to acoustic boundary element models
    • In R.J. Bernhard and R.F. Keltie, eds., ASME Winter Annual Meeting, San Francisco, American Society of Mechanical Engineers, New York
    • H.R. Hall and R.J. Bernhard. Total least squaressolutions to acoustic boundary element models. In R.J. Bernhard and R.F. Keltie, eds., Proceedings of the International Symposium on Numerical Techniques in Acoustic Radiation, ASME Winter Annual Meeting, San Francisco, Vol. 6, pp. 145-152. American Society of Mechanical Engineers, New York, 1989.
    • (1989) Proceedings of the International Symposium on Numerical Techniques in Acoustic Radiation , vol.6 , pp. 145-152
    • Hall, H.R.1    Bernhard, R.J.2
  • 80
    • 0003841907 scopus 로고
    • Robust Statistics: The Approach Based on Influence Functions
    • Wiley, New York
    • F.R. Hampel, E.N. Ronchetti, P. Rousser, and W.A. Stachel. Robust Statistics: The Approach Based on Influence Functions. Wiley, New York, 1987.
    • (1987)
    • Hampel, F.R.1    Ronchetti, E.N.2    Rousser, P.3    Stachel, W.A.4
  • 81
    • 0003591521 scopus 로고
    • Fundamentals of ArtificialNeural Networks
    • MIT Press, Cambridge, MA
    • M. Hassoun. Fundamentals of ArtificialNeural Networks. MIT Press, Cambridge, MA, 1995.
    • (1995)
    • Hassoun, M.1
  • 82
    • 0003807773 scopus 로고
    • Adaptive Filter Theory
    • 2nd ed. Prentice Hall, Englewood Cliffs, NJ
    • S. Haykin. Adaptive Filter Theory, 2nd ed. Prentice Hall, Englewood Cliffs, NJ, 1991.
    • (1991)
    • Haykin, S.1
  • 83
    • 0003413187 scopus 로고
    • Neural Networks: A Comprehensive Foundation
    • IEEE Press, Piscataway, NJ
    • S. Haykin. Neural Networks: A Comprehensive Foundation. IEEE Press, Piscataway, NJ, 1994.
    • (1994)
    • Haykin, S.1
  • 84
    • 0004235829 scopus 로고
    • Optimization and DynamicalSystems
    • Communications and Control Engineering. Springer-Verlag, London
    • U. Helmke and J.B. Moore. Optimization and DynamicalSystems. Communications and Control Engineering. Springer-Verlag, London, 1994.
    • (1994)
    • Helmke, U.1    Moore, J.B.2
  • 85
    • 84875036967 scopus 로고
    • Conjugate Direction Methodsin Optimization
    • Springer-Verlag, New York
    • M. Hestenes. Conjugate Direction Methodsin Optimization. Springer-Verlag, New York, 1980.
    • (1980)
    • Hestenes, M.1
  • 86
    • 0000135303 scopus 로고
    • Methods of conjugategradients for solving linear systems
    • M.R. Hestenes and E. Stiefel. Methods of conjugategradients for solving linear systems. J. Res. Natl. Bur. Stand., 49(6):409-436, 1952.
    • (1952) J. Res. Natl. Bur. Stand. , vol.49 , Issue.6 , pp. 409-436
    • Hestenes, M.R.1    Stiefel, E.2
  • 87
    • 33747641618 scopus 로고    scopus 로고
    • Image denoising usingtotal least squares
    • K. Hirakawa and T.W. Parks. Image denoising usingtotal least squares. IEEE Trans. Image Process., 15:2730-2742, 2006.
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 2730-2742
    • Hirakawa, K.1    Parks, T.W.2
  • 88
    • 0017280570 scopus 로고
    • The analysis andselection of variables in linear regression
    • R.R. Hocking. The analysis andselection of variables in linear regression. Biometrics, 32:1-49, 1976.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 89
    • 0020798977 scopus 로고
    • Developments in linearregression methodology 1959-1982
    • R.R. Hocking. Developments in linearregression methodology 1959-1982. Technometrics, 25:219-230, 1983.
    • (1983) Technometrics , vol.25 , pp. 219-230
    • Hocking, R.R.1
  • 90
    • 0000864855 scopus 로고
    • Data uncertainties andleast squares regression
    • S.D. Hodges and P.G. Moore. Data uncertainties andleast squares regression. Appl. Stat., 21:185-195, 1972.
    • (1972) Appl. Stat. , vol.21 , pp. 185-195
    • Hodges, S.D.1    Moore, P.G.2
  • 91
    • 0004262735 scopus 로고
    • Robust Statistics
    • Wiley, New York
    • P. Huber. Robust Statistics. Wiley, New York, 1981.
    • (1981)
    • Huber, P.1
  • 92
    • 0011893432 scopus 로고
    • Analysis of theTotal Least Squares Problem and Its Use in Parameter Estimation
    • Ph.D. dissertation. Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
    • S. Van Huffel. Analysis of theTotal Least Squares Problem and Its Use in Parameter Estimation. Ph.D. dissertation. Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 1987.
    • (1987)
    • Van Huffel, S.1
  • 93
    • 67349105779 scopus 로고
    • On the significanceof nongeneric total least squares problems
    • S. Van Huffel. On the significanceof nongeneric total least squares problems. SIAM J. Matrix Anal. Appl., 13(1):20-35, 1992.
    • (1992) SIAM J. Matrix Anal. Appl. , vol.13 , Issue.1 , pp. 20-35
    • Van Huffel, S.1
  • 94
    • 84886528617 scopus 로고    scopus 로고
    • TLS applications inbiomedical signal processing
    • In S. Van Huffel, ed., Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling. SIAM Proceedings Series. SIAM, Philadelphia
    • S. Van Huffel. TLS applications inbiomedical signal processing. In S. Van Huffel, ed., Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling. SIAM Proceedings Series. SIAM, Philadelphia, 1997.
    • (1997)
    • Van Huffel, S.1
  • 95
    • 0344034471 scopus 로고
    • Subset selection using the total least squares approach in collinearity problems with errors in the variables
    • S. Van Huffel and J. Vandewalle. Subset selection using the total least squares approach in collinearity problems with errors in the variables. Linear Algebra Appl., 88-89:695-714, 1987.
    • (1987) Linear Algebra Appl. , vol.88 , Issue.89 , pp. 695-714
    • Van Huffel, S.1    Vandewalle, J.2
  • 96
  • 97
    • 0000173668 scopus 로고
    • Analysis and properties of the generalized total least squares problem ax = b when some or all columns of a are subject to errors
    • S. Van Huffel and J. Vandewalle. Analysis and properties of the generalized total least squares problem ax = b when some or all columns of a are subject to errors. SIAM J. Matrix Anal. Appl., 10:294-315, 1989.
    • (1989) SIAM J. Matrix Anal. Appl. , vol.10 , pp. 294-315
    • Van Huffel, S.1    Vandewalle, J.2
  • 98
    • 0003914908 scopus 로고
    • The Total Least Squares Problems: Computational Aspects and Analysis
    • Frontiers in Applied Mathematics. SIAM, Philadelphia
    • S. Van Huffel and J. Vandewalle. The Total Least Squares Problems: Computational Aspects and Analysis. Frontiers in Applied Mathematics. SIAM, Philadelphia, 1991.
    • (1991)
    • Van Huffel, S.1    Vandewalle, J.2
  • 99
    • 38249035548 scopus 로고
    • An efficient andreliable algorithm for computing the singular subspace of a matrix, associated with its smallest singular values
    • S. Van Huffel, J. Vandewalle, and A. Haegemans. An efficient andreliable algorithm for computing the singular subspace of a matrix, associated with its smallest singular values. J. Comput. Appl. Math., 19:313-330, 1987.
    • (1987) J. Comput. Appl. Math. , vol.19 , pp. 313-330
    • Van Huffel, S.1    Vandewalle, J.2    Haegemans, A.3
  • 100
    • 0023120065 scopus 로고
    • Reliable and efficientdeconvolution technique based on total linear least squares for calculating the renal retention function
    • S. Van Huffel, J. Vandewalle, M.C. De Roo, and J.L. Willems. Reliable and efficientdeconvolution technique based on total linear least squares for calculating the renal retention function. Med. Biol. Eng. Comput., 25:26-33, 1987.
    • (1987) Med. Biol. Eng. Comput. , vol.25 , pp. 26-33
    • Van Huffel, S.1    Vandewalle, J.2    De Roo, M.C.3    Willems, J.L.4
  • 101
    • 0024137490 scopus 로고
    • Increased rates ofconvergence through learning rate adaptation
    • R.A. Jacobs. Increased rates ofconvergence through learning rate adaptation. Neural Netw., 1(4):295-307, 1988.
    • (1988) Neural Netw. , vol.1 , Issue.4 , pp. 295-307
    • Jacobs, R.A.1
  • 103
    • 0000293377 scopus 로고
    • Backpropagation learning formultilayer feedforward neural networks using the conjugate gradient method
    • E.M. Johannson, F.U. Dowla, and D.M. Goodman. Backpropagation learning formultilayer feedforward neural networks using the conjugate gradient method. Int. J. Neural Syst., 2(4):291-301, 1992.
    • (1992) Int. J. Neural Syst. , vol.2 , Issue.4 , pp. 291-301
    • Johannson, E.M.1    Dowla, F.U.2    Goodman, D.M.3
  • 104
    • 0025416589 scopus 로고
    • Diffraction tomography forgeophysical monitoring of hydrocarbon reservoirs
    • J.H. Justice and A.A. Vassiliou. Diffraction tomography forgeophysical monitoring of hydrocarbon reservoirs. Proc. IEEE, 78:711-722, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 711-722
    • Justice, J.H.1    Vassiliou, A.A.2
  • 105
    • 0002510808 scopus 로고
    • The influence functionin the errors in variables problem
    • G. Kelly. The influence functionin the errors in variables problem. Ann. Stat., 12:87-100, 1984.
    • (1984) Ann. Stat. , vol.12 , pp. 87-100
    • Kelly, G.1
  • 106
    • 0020707850 scopus 로고
    • On estimating parametersin a simple linear errors-in-variables model
    • R.H. Ketellapper. On estimating parametersin a simple linear errors-in-variables model. Technometrics, 25:43-47, 1983.
    • (1983) Technometrics , vol.25 , pp. 43-47
    • Ketellapper, R.H.1
  • 107
    • 0023363657 scopus 로고
    • Adaptive airborne MTI: an auxiliary channel approach
    • R. Klemm. Adaptive airborne MTI: an auxiliary channel approach. IEE Proc. F, 134:269-276, 1987.
    • (1987) IEE Proc. F , vol.134 , pp. 269-276
    • Klemm, R.1
  • 108
    • 0004110091 scopus 로고
    • Linear Regression Analysisof Economic Time Series
    • De Erver F. Bohn, Haarlem, The Netherlands
    • T.C. Koopmans. Linear Regression Analysisof Economic Time Series. De Erver F. Bohn, Haarlem, The Netherlands, 1937.
    • (1937)
    • Koopmans, T.C.1
  • 109
    • 0002290223 scopus 로고
    • Efficient parallel learningalgorithms for neural networks
    • In D.S. Touretzky, ed., Morgan Kaufmann, San Mateo, CA
    • A.H. Kramer and A. Sangiovanni-Vincentelli. Efficient parallel learningalgorithms for neural networks. In D.S. Touretzky, ed., Advances in Neural Information Processing Systems, Vol. 1, pp. 40-48, Morgan Kaufmann, San Mateo, CA, 1989.
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 40-48
    • Kramer, A.H.1    Sangiovanni-vincentelli, A.2
  • 110
    • 0000382262 scopus 로고
    • Method of stochasticapproximation in the determination of the largest eigenvalue of the mathematical expectation of random matrices
    • T.P. Krasulina. Method of stochasticapproximation in the determination of the largest eigenvalue of the mathematical expectation of random matrices. Automat. Remote Control, 2:215-221, 1970.
    • (1970) Automat. Remote Control , vol.2 , pp. 215-221
    • Krasulina, T.P.1
  • 112
  • 113
    • 0003452601 scopus 로고
    • Stochastic Approximation Methodsfor Constrained and Unconstrained Systems
    • Springer-Verlag New York
    • H. Kushner and D. Clark. Stochastic Approximation Methodsfor Constrained and Unconstrained Systems. Springer-Verlag New York, 1978.
    • (1978)
    • Kushner, H.1    Clark, D.2
  • 114
    • 0003476369 scopus 로고
    • Solving Least SquaresProblems
    • Prentice-Hall, Englewood Cliffs, NJ
    • C. Lawson and R. Hanson. Solving Least SquaresProblems. Prentice-Hall, Englewood Cliffs, NJ, 1974.
    • (1974)
    • Lawson, C.1    Hanson, R.2
  • 115
    • 0003346575 scopus 로고
    • From basic networkprinciples to neural architecture: emergence of spatial opponent cells
    • E. Linsker. From basic networkprinciples to neural architecture: emergence of spatial opponent cells. Proc. Natl. Acad. Sci. USA, 83:7508-7512, 1986.
    • (1986) Proc. Natl. Acad. Sci. USA , vol.83 , pp. 7508-7512
    • Linsker, E.1
  • 116
    • 0009381628 scopus 로고
    • From basic networkprinciples to neural architecture: emergence of orientation selective cells
    • E. Linsker. From basic networkprinciples to neural architecture: emergence of orientation selective cells. Proc. Natl. Acad. Sci. USA, 83:8390-8394, 1986.
    • (1986) Proc. Natl. Acad. Sci. USA , vol.83 , pp. 8390-8394
    • Linsker, E.1
  • 117
    • 0005050740 scopus 로고
    • From basic networkprinciples to neural architecture: emergence of orientation columns
    • E. Linsker. From basic networkprinciples to neural architecture: emergence of orientation columns. Proc. Natl. Acad. Sci. USA, 83:8779-8783, 1986.
    • (1986) Proc. Natl. Acad. Sci. USA , vol.83 , pp. 8779-8783
    • Linsker, E.1
  • 118
    • 0017526570 scopus 로고
    • Analysis of recursivestochastic algorithms
    • L. Ljung. Analysis of recursivestochastic algorithms. IEEE Trans. Autom. Control, 22:551-575, 1977.
    • (1977) IEEE Trans. Autom. Control , vol.22 , pp. 551-575
    • Ljung, L.1
  • 119
    • 0003488911 scopus 로고
    • Linear and NonlinearProgramming, 2nd ed
    • Addison-Wesley, Reading, MA
    • D.G. Luenberger. Linear and NonlinearProgramming, 2nd ed. Addison-Wesley, Reading, MA, 1984.
    • (1984)
    • Luenberger, D.G.1
  • 120
    • 0030152492 scopus 로고    scopus 로고
    • Neural network approachto the TLS linear prediction frequency estimation problem
    • F. Luo, Y. Li, and C. He. Neural network approachto the TLS linear prediction frequency estimation problem. Neurocomputing, 11:31-42, 1996.
    • (1996) Neurocomputing , vol.11 , pp. 31-42
    • Luo, F.1    Li, Y.2    He, C.3
  • 121
    • 0003997129 scopus 로고    scopus 로고
    • Applied Neural Networksfor Signal Processing
    • Cambridge University Press, New York
    • F. Luo and R. Unbehauen. Applied Neural Networksfor Signal Processing. Cambridge University Press, New York, 1997.
    • (1997)
    • Luo, F.1    Unbehauen, R.2
  • 122
    • 0031234383 scopus 로고    scopus 로고
    • A minor subspaceanalysis algorithm
    • Sept.
    • F. Luo and R. Unbehauen. A minor subspaceanalysis algorithm. IEEE Trans. Neural Netw., 8(5):1149-1155, Sept. 1997.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.5 , pp. 1149-1155
    • Luo, F.1    Unbehauen, R.2
  • 123
    • 0033105279 scopus 로고    scopus 로고
    • Comments on: A unified algorithm for principal and minor components extraction
    • F. Luo and R. Unbehauen. Comments on: A unified algorithm for principal and minor components extraction. Letter to the Editor. Neural Netw., 12:393, 1999.
    • (1999) Letter to the Editor. Neural Netw. , vol.12 , pp. 393
    • Luo, F.1    Unbehauen, R.2
  • 124
    • 0031105381 scopus 로고    scopus 로고
    • A minor componentanalysis algorithm
    • F. Luo, R. Unbehauen, and A. Cichocki. A minor componentanalysis algorithm. Neural Netw., 10(2):291-297, 1997.
    • (1997) Neural Netw. , vol.10 , Issue.2 , pp. 291-297
    • Luo, F.1    Unbehauen, R.2    Cichocki, A.3
  • 125
    • 0029004784 scopus 로고
    • A principal componentanalysis algorithm with invariant norm
    • F.L. Luo, R. Unbehauen, and Y.D. Li. A principal componentanalysis algorithm with invariant norm. Neurocomputing, 8(2):213-221, 1995.
    • (1995) Neurocomputing , vol.8 , Issue.2 , pp. 213-221
    • Luo, F.L.1    Unbehauen, R.2    Li, Y.D.3
  • 126
    • 84943042620 scopus 로고
    • The fitting ofstraight lines when both variables are subject to error
    • A. Madansky. The fitting ofstraight lines when both variables are subject to error. J. Am. Stat. Assoc., 54:173-205, 1959.
    • (1959) J. Am. Stat. Assoc. , vol.54 , pp. 173-205
    • Madansky, A.1
  • 128
    • 0028387716 scopus 로고
    • Development and analysisof a neural network approach to Pisarenko's harmonic retrieval method
    • G. Mathew and V. Reddy. Development and analysisof a neural network approach to Pisarenko's harmonic retrieval method. IEEE Trans. Signal Process., 42:663-667, 1994.
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 663-667
    • Mathew, G.1    Reddy, V.2
  • 129
    • 0028468390 scopus 로고
    • Orthogonal eigensubspace estimationusing neural networks
    • G. Mathew and V. Reddy. Orthogonal eigensubspace estimationusing neural networks. IEEE Trans. Signal Process., 42:1803-1811, 1994.
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 1803-1811
    • Mathew, G.1    Reddy, V.2
  • 131
    • 0002824680 scopus 로고
    • Symmetric gauge functionsand unitarily invariant norms
    • L. Mirsky. Symmetric gauge functionsand unitarily invariant norms. Q. J. Math. Oxford, 11:50-59, 1960.
    • (1960) Q. J. Math. Oxford , vol.11 , pp. 50-59
    • Mirsky, L.1
  • 132
    • 0004539043 scopus 로고
    • Nonlinear Systems
    • Prentice Hall, Englewood Cliffs, NJ
    • R.R. Mohler. Nonlinear Systems, Vol. I, Dynamics and Control. Prentice Hall, Englewood Cliffs, NJ, 1991.
    • (1991) Dynamics and Control , vol.I
    • Mohler, R.R.1
  • 133
    • 0027205884 scopus 로고
    • A scaled conjugategradient algorithm for fast supervised learning
    • M.F. Moller. A scaled conjugategradient algorithm for fast supervised learning. Neural Netw., 6:525-533, 1993.
    • (1993) Neural Netw. , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 135
    • 0011306403 scopus 로고
    • Mathematical Concepts andTechniques for Modelling Static and Dynamic Systems
    • Ph.D. dissertation, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
    • B. De Moor. Mathematical Concepts andTechniques for Modelling Static and Dynamic Systems. Ph.D. dissertation, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 1988.
    • (1988)
    • De Moor, B.1
  • 136
    • 84886491364 scopus 로고
    • An adaptive singular value decomposition algorithm based on generalized Chebyshev recursion
    • In T.S. Durrani, J.B. Abbiss, J.E. Hudson, R.W. Madan, J.G. McWhirter, and T.A. Moore, eds., Proceedings of the Conference on Mathematics in Signal Processing, Clarendon Press, Oxford, UK
    • B. De Moor and J. Vandewalle. An adaptive singular value decomposition algorithm based on generalized Chebyshev recursion. In T.S. Durrani, J.B. Abbiss, J.E. Hudson, R.W. Madan, J.G. McWhirter, and T.A. Moore, eds., Proceedings of the Conference on Mathematics in Signal Processing, pp. 607-635. Clarendon Press, Oxford, UK, 1987.
    • (1987) , pp. 607-635
    • De Moor, B.1    Vandewalle, J.2
  • 137
    • 84957801568 scopus 로고    scopus 로고
    • The role oftotal least squares in motion analysis
    • In H. Burkhardt, ed., Proceedings of the European Conference on Computer Vision, Lecture Notes on Computer Science. Springer-Verlag, New York, June
    • M. Muhlich and R. Mester. The role oftotal least squares in motion analysis. In H. Burkhardt, ed., Proceedings of the European Conference on Computer Vision, pp. 305-321. Lecture Notes on Computer Science. Springer-Verlag, New York, June 1998.
    • (1998) , pp. 305-321
    • Muhlich, M.1    Mester, R.2
  • 138
    • 0020464111 scopus 로고
    • A simplified neuronmodel as a principal component analyzer
    • E. Oja. A simplified neuronmodel as a principal component analyzer. J. Math. Biol., 16:267-273, 1982.
    • (1982) J. Math. Biol. , vol.16 , pp. 267-273
    • Oja, E.1
  • 139
    • 0004121838 scopus 로고
    • Subspace Methods ofPattern Recognition
    • Research Studies Press/Wiley, Letchworth, UK
    • E. Oja. Subspace Methods ofPattern Recognition. Research Studies Press/Wiley, Letchworth, UK, 1983.
    • (1983)
    • Oja, E.1
  • 140
    • 0002399288 scopus 로고
    • Neural networks, principal components and subspace
    • E. Oja. Neural networks, principal components and subspace. Int. J. Neural Syst., 1:61-68, 1989.
    • (1989) Int. J. Neural Syst. , vol.1 , pp. 61-68
    • Oja, E.1
  • 141
    • 0026954958 scopus 로고
    • Principal components, minor components and linear neural networks
    • E. Oja. Principal components, minor components and linear neural networks. Neural Netw., 5:927-935, 1992.
    • (1992) Neural Netw. , vol.5 , pp. 927-935
    • Oja, E.1
  • 142
    • 0022013023 scopus 로고
    • On stochastic approximationof the eigenvectors and eigenvalues of the expectation of a random matrix
    • E. Oja and J. Karhunen. On stochastic approximationof the eigenvectors and eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl., 106:69-84, 1985.
    • (1985) J. Math. Anal. Appl. , vol.106 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 144
    • 0030608086 scopus 로고    scopus 로고
    • Neural fitting: robustness by anti-Hebbian learning
    • E. Oja and L. Wang. Neural fitting: robustness by anti-Hebbian learning. Neurocomputing, 12:155-170, 1996.
    • (1996) Neurocomputing , vol.12 , pp. 155-170
    • Oja, E.1    Wang, L.2
  • 145
    • 0030131079 scopus 로고    scopus 로고
    • Robust fitting bynonlinear neural units
    • E. Oja and L. Wang. Robust fitting bynonlinear neural units. Neural Netw., 9(3):435-444, 1996.
    • (1996) Neural Netw. , vol.9 , Issue.3 , pp. 435-444
    • Oja, E.1    Wang, L.2
  • 146
    • 84883952058 scopus 로고    scopus 로고
    • Unifying least squares, total least squares and data least squares problems
    • In S. Van Huffel and P. Lemmerling, eds., Proceedings of the Third International Workshop on TLS and Errors-in-Variables Modelling, Kluwer Academic, Dordrecht, The Netherlands
    • C.C. Paige and Z. Strakos. Unifying least squares, total least squares and data least squares problems. In S. Van Huffel and P. Lemmerling, eds., Proceedings of the Third International Workshop on TLS and Errors-in-Variables Modelling, pp. 35-44. Kluwer Academic, Dordrecht, The Netherlands. 2001.
    • (2001) , pp. 35-44
    • Paige, C.C.1    Strakos, Z.2
  • 147
    • 0036013504 scopus 로고    scopus 로고
    • Scaled total leastsquares fundamentals
    • C.C. Paige and Z. Strakos. Scaled total leastsquares fundamentals. Numer. Math., 91:117-146, 2002.
    • (2002) Numer. Math. , vol.91 , pp. 117-146
    • Paige, C.C.1    Strakos, Z.2
  • 148
    • 0003411478 scopus 로고
    • Adaptive Pattern Recognitionand Neural Networks
    • Addison-Wesley, Reading, MA
    • Y. Pao. Adaptive Pattern Recognitionand Neural Networks. Addison-Wesley, Reading, MA, 1989.
    • (1989)
    • Pao, Y.1
  • 149
    • 84966257139 scopus 로고
    • The Rayleigh quotientiteration and some generalizations for nonormal matrices
    • B.N. Parlett. The Rayleigh quotientiteration and some generalizations for nonormal matrices. Math. Comput., 28:679-693, 1974.
    • (1974) Math. Comput. , vol.28 , pp. 679-693
    • Parlett, B.N.1
  • 150
    • 0003668665 scopus 로고
    • The Symmetric EigenvalueProblem
    • Englewood Cliffs, NJ, Prentice Hall
    • B.N. Parlett. The Symmetric EigenvalueProblem. Englewood Cliffs, NJ, Prentice Hall, 1980.
    • (1980)
    • Parlett, B.N.1
  • 151
    • 0000325341 scopus 로고
    • On lines andplanes of closest fit to points in space
    • K. Pearson. On lines andplanes of closest fit to points in space. Philos. Mag., 2:559-572, 1901.
    • (1901) Philos. Mag. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 152
    • 84984520202 scopus 로고
    • The retrieval ofharmonics from a covariance function
    • V.F. Pisarenko. The retrieval ofharmonics from a covariance function. Geophys. J. R. Astron. Soc., 33:347-366, 1973.
    • (1973) Geophys. J. R. Astron. Soc. , vol.33 , pp. 347-366
    • Pisarenko, V.F.1
  • 153
    • 0004294776 scopus 로고
    • Experiments on Learningby Backpropagation
    • Technical report T.R. CMU-CS-86-126. Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
    • D. Plaut, S. Nowlan, and G.E. Hinton. Experiments on Learningby Backpropagation. Technical report T.R. CMU-CS-86-126. Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1986.
    • (1986)
    • Plaut, D.1    Nowlan, S.2    Hinton, G.E.3
  • 154
    • 0003555845 scopus 로고
    • Computational Methods inOptimization: A Unified Approach
    • Academic Press, New York
    • E. Polak. Computational Methods inOptimization: A Unified Approach. Academic Press, New York, 1971.
    • (1971)
    • Polak, E.1
  • 155
    • 33846446220 scopus 로고
    • Restart procedures forthe conjugate gradient method
    • M.J.D. Powell. Restart procedures forthe conjugate gradient method. Math. Programming, 12:241-254, 1977.
    • (1977) Math. Programming , vol.12 , pp. 241-254
    • Powell, M.J.D.1
  • 156
    • 84886459960 scopus 로고    scopus 로고
    • A new approachto total least-squares techniques for metrological applications
    • In P. Ciarlini, M.G. Cox, F. Pavese, and D. Richter, eds., Advanced Mathematical Tools in Metrology II. Series on Advances in Mathematics for Applied Sciences, World Scientific, Hackensack, NJ
    • A. Premoli, M.L. Rastello, and G. Cirrincione. A new approachto total least-squares techniques for metrological applications. In P. Ciarlini, M.G. Cox, F. Pavese, and D. Richter, eds., Advanced Mathematical Tools in Metrology II. Series on Advances in Mathematics for Applied Sciences, Vol. 40, pp. 206-215. World Scientific, Hackensack, NJ, 1996.
    • (1996) , vol.40 , pp. 206-215
    • Premoli, A.1    Rastello, M.L.2    Cirrincione, G.3
  • 157
    • 0003474751 scopus 로고
    • Numerical Recipes inC: The Art of Scientific Computing
    • 2nd ed. Cambridge University Press, New York
    • W.H. Press, S.A. Teukolsky, W.T. Wetterling, and B.P. Flannery. Numerical Recipes inC: The Art of Scientific Computing, 2nd ed. Cambridge University Press, New York, 1992.
    • (1992)
    • Press, W.H.1    Teukolsky, S.A.2    Wetterling, W.T.3    Flannery, B.P.4
  • 158
    • 50249143180 scopus 로고
    • Total least squaresapproach for frequency estimation using linear prediction
    • M.A. Rahman and K.B. Yu. Total least squaresapproach for frequency estimation using linear prediction. IEEE Trans. Acoust. Speech Signal Process., 5:1440-1454, 1987.
    • (1987) IEEE Trans. Acoust. Speech Signal Process. , vol.5 , pp. 1440-1454
    • Rahman, M.A.1    Yu, K.B.2
  • 159
    • 35148835696 scopus 로고    scopus 로고
    • Applications of TLSand related methods in the environmental sciences
    • J.A. Ramos. Applications of TLSand related methods in the environmental sciences. Comput. Stat. Data Anal., 2(2):1234-1267, 2007.
    • (2007) Comput. Stat. Data Anal. , vol.2 , Issue.2 , pp. 1234-1267
    • Ramos, J.A.1
  • 160
    • 0003128308 scopus 로고    scopus 로고
    • Unified treatment ofLS, TLS and truncated SVD methods using a weighted TLS framework
    • In S. Van Huffel, ed., SIAM, Philadelphia
    • B.D. Rao. Unified treatment ofLS, TLS and truncated SVD methods using a weighted TLS framework. In S. Van Huffel, ed., Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, pp. 11-20. SIAM, Philadelphia, 1997.
    • (1997) Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling , pp. 11-20
    • Rao, B.D.1
  • 161
    • 0000016172 scopus 로고
    • A stochastic approximationmethod
    • H. Robbins and S. Monro. A stochastic approximationmethod. Ann. Math. Stat., 2:400-407, 1951.
    • (1951) Ann. Math. Stat. , vol.2 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 164
    • 84936777186 scopus 로고
    • Chebyshev acceleration techniquesfor solving nonsymmetric eigenvalue problems
    • Y. Saad. Chebyshev acceleration techniquesfor solving nonsymmetric eigenvalue problems. Math. Comput., 2:567-588, 1984.
    • (1984) Math. Comput. , vol.2 , pp. 567-588
    • Saad, Y.1
  • 165
    • 0017473858 scopus 로고
    • On-line modified least-squares parameter estimation of linear discrete dynamic systems
    • S. Sagara and K.Wada. On-line modified least-squares parameter estimation of linear discrete dynamic systems. Int. J. Control, 25(3):329-343, 1977.
    • (1977) Int. J. Control , vol.25 , Issue.3 , pp. 329-343
    • Sagara, S.1    Wada, K.2
  • 166
    • 0024883243 scopus 로고
    • Optimal unsupervised learningin a single-layer linear feedforward neural network
    • T.D. Sanger. Optimal unsupervised learningin a single-layer linear feedforward neural network. Neural Netw., :459-473, 1989.
    • (1989) Neural Netw. , pp. 459-473
    • Sanger, T.D.1
  • 167
    • 0022683359 scopus 로고
    • Multiple emitter locationand signal parameter estimation
    • R. Schmidt. Multiple emitter locationand signal parameter estimation. IEEE Trans. Antennas Propag., 4:276-280, 1986.
    • (1986) IEEE Trans. Antennas Propag. , vol.4 , pp. 276-280
    • Schmidt, R.1
  • 168
    • 0000763779 scopus 로고
    • Consistent estimation ofa regression with errors in the variables
    • H. Schneeweiss. Consistent estimation ofa regression with errors in the variables. Metrika, 23:101-115, 1976.
    • (1976) Metrika , vol.23 , pp. 101-115
    • Schneeweiss, H.1
  • 169
    • 0006412003 scopus 로고
    • Gradient vectorfields neardegenerate singularities
    • In Z. Nitecki and C. Robinson, eds., Lecture Notes in Mathematics 819. Springer-Verlag, Berlin
    • D. Shafer. Gradient vectorfields neardegenerate singularities. In Z. Nitecki and C. Robinson, eds., Global Theory of Dynamical Systems, pp. 410-417. Lecture Notes in Mathematics 819. Springer-Verlag, Berlin, 1980.
    • (1980) Global Theory of Dynamical Systems , pp. 410-417
    • Shafer, D.1
  • 170
    • 0000618748 scopus 로고
    • Conjugate gradient methodswith inexact searches
    • D.F. Shanno. Conjugate gradient methodswith inexact searches. Math. Oper. Res., (3):244-256, 1978.
    • (1978) Math. Oper. Res. , Issue.3 , pp. 244-256
    • Shanno, D.F.1
  • 171
    • 0020191638 scopus 로고
    • Regularization of Marchenko's integral equation by total least squares
    • M.T. Silvia and E.C. Tacker. Regularization of Marchenko's integral equation by total least squares. J. Acoust. Soc. Am., 72:1202-1207, 1982.
    • (1982) J. Acoust. Soc. Am. , vol.72 , pp. 1202-1207
    • Silvia, M.T.1    Tacker, E.C.2
  • 172
    • 0024648435 scopus 로고
    • Adaptive IIR filtering
    • Apr.
    • J.J. Sllynk. Adaptive IIR filtering. IEEE ASSP Mag., 2:4-21, Apr. 1989.
    • (1989) IEEE ASSP Mag. , vol.2 , pp. 4-21
    • Sllynk, J.J.1
  • 173
    • 26344466841 scopus 로고
    • On discrete linearorthogonal LP-approximation
    • H. Spath. On discrete linearorthogonal LP-approximation. Z. Angew. Math. Mech., 2:354-355, 1982.
    • (1982) Z. Angew. Math. Mech. , vol.2 , pp. 354-355
    • Spath, H.1
  • 174
    • 0344611364 scopus 로고
    • Orthogonal least squaresfitting with linear manifolds
    • H. Spath. Orthogonal least squaresfitting with linear manifolds. Numer. Math., 8:441-445, 1986.
    • (1986) Numer. Math. , vol.8 , pp. 441-445
    • Spath, H.1
  • 175
    • 0003423535 scopus 로고
    • Models in Regressionand Related Topics
    • Methuen, London
    • P. Sprent. Models in Regressionand Related Topics. Methuen, London, 1969.
    • (1969)
    • Sprent, P.1
  • 176
    • 4244133350 scopus 로고
    • Concepts for ReliableModelling of Linear Systems with Application to On-Line Identification of Multivariable State Space Descriptions
    • Ph.D. dissertation, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
    • J. Staar. Concepts for ReliableModelling of Linear Systems with Application to On-Line Identification of Multivariable State Space Descriptions. Ph.D. dissertation, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 1982.
    • (1982)
    • Staar, J.1
  • 177
    • 0344591037 scopus 로고
    • Sensitivity Coefficients forthe Effects of Errors in the Independent Variables in a Line Regression
    • Technical Report TR-571. Department of Computer Science, University of Maryland, College Park, MD
    • G.W. Stewart. Sensitivity Coefficients forthe Effects of Errors in the Independent Variables in a Line Regression. Technical Report TR-571. Department of Computer Science, University of Maryland, College Park, MD, 1977.
    • (1977)
    • Stewart, G.W.1
  • 178
    • 33746243736 scopus 로고    scopus 로고
    • Matrix Algorithms
    • SIAM, Philadelphia
    • G.W. Stewart. Matrix Algorithms, Vol. II, Eigensystems. SIAM, Philadelphia, 2001.
    • (2001) Eigensystems , vol.II
    • Stewart, G.W.1
  • 179
    • 0344591026 scopus 로고
    • Comparative Performance Studyof Least-Squares and Total Least-Squares Yule-Walker Estimates of Autoregressive Parameters
    • Internal Report. Department of Automatic Control, Polytechnic Institute of Bucharest, Bucharest, Roumania
    • A. Stoian, P. Stoica, and S. Van Huffel. Comparative Performance Studyof Least-Squares and Total Least-Squares Yule-Walker Estimates of Autoregressive Parameters. Internal Report. Department of Automatic Control, Polytechnic Institute of Bucharest, Bucharest, Roumania, 1990.
    • (1990)
    • Stoian, A.1    Stoica, P.2    Van Huffel, S.3
  • 180
    • 0001742465 scopus 로고
    • The generation ofcorrelated Weibull clutter for signal detection problem
    • W.J. Szajowski. The generation ofcorrelated Weibull clutter for signal detection problem. IEEE Trans. Aerosp. Electron. Syst., 3(5):536-540, 1977.
    • (1977) IEEE Trans. Aerosp. Electron. Syst. , vol.3 , Issue.5 , pp. 536-540
    • Szajowski, W.J.1
  • 181
    • 0032785725 scopus 로고    scopus 로고
    • Against the convergenceof the minor component analysis neurons
    • Jan.
    • A. Taleb and G. Cirrincione. Against the convergenceof the minor component analysis neurons. IEEE Trans. Neural Netw., 0(1):207-210, Jan. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.0 , Issue.1 , pp. 207-210
    • Taleb, A.1    Cirrincione, G.2
  • 182
    • 0002103280 scopus 로고
    • Principal submatrices: IX. Interlacing inequalities forsingular values of submatrices
    • R.C. Thompson. Principal submatrices: IX. Interlacing inequalities forsingular values of submatrices. Linear Algebra Appl., :1-12, 1972.
    • (1972) Linear Algebra Appl. , pp. 1-12
    • Thompson, R.C.1
  • 183
    • 4243256274 scopus 로고
    • The Spectral LineEnhancer
    • Ph.D. dissertation, Stanford University, Stanford, CA, May
    • J. Treichler. The Spectral LineEnhancer. Ph.D. dissertation, Stanford University, Stanford, CA, May 1977.
    • (1977)
    • Treichler, J.1
  • 184
    • 0016990743 scopus 로고
    • Fractional tap-spacing equalizerand consequences for clock recovery in data modems
    • Aug.
    • G. Ungerboeck. Fractional tap-spacing equalizerand consequences for clock recovery in data modems. IEEE Trans. Commun., 24:856-864, Aug. 1976.
    • (1976) IEEE Trans. Commun. , vol.24 , pp. 856-864
    • Ungerboeck, G.1
  • 186
    • 0030094135 scopus 로고    scopus 로고
    • A unified neuralbigradient algorithm for robust PCA and MCA
    • L. Wang and J. Karhunen. A unified neuralbigradient algorithm for robust PCA and MCA. Int. J. Neural Syst., :53-67, 1996.
    • (1996) Int. J. Neural Syst. , pp. 53-67
    • Wang, L.1    Karhunen, J.2
  • 187
    • 0023541050 scopus 로고
    • Learning algorithms forconnectionist networks: applied gradient methods of nonlinear optimization
    • IEEE, San Diego, CA
    • R.L. Watrous. Learning algorithms forconnectionist networks: applied gradient methods of nonlinear optimization. Proceedings of the IEEE First International Conference on Neural Networks, Vol. 2, pp. 619-627. IEEE, San Diego, CA, 1987.
    • (1987) Proceedings of the IEEE First International Conference on Neural Networks , vol.2 , pp. 619-627
    • Watrous, R.L.1
  • 188
    • 77957208172 scopus 로고
    • Numerical methods forlinear orthogonal LP approximation
    • G.A. Watson. Numerical methods forlinear orthogonal LP approximation. IMA J. Numer. Anal., :275-287, 1982.
    • (1982) IMA J. Numer. Anal. , pp. 275-287
    • Watson, G.A.1
  • 189
    • 0003911488 scopus 로고
    • A Comparison ofNon-linear Optimisation Strategies for Feed-Forward Adaptive Layered Networks
    • RSRE Memorandum 4157. Royal Signals and Radar Establishment, Malvern, UK
    • A.R.Webb, D. Lowe, and M.D. Bedworth. A Comparison ofNon-linear Optimisation Strategies for Feed-Forward Adaptive Layered Networks. RSRE Memorandum 4157. Royal Signals and Radar Establishment, Malvern, UK, 1988.
    • (1988)
    • Webb, A.R.1    Lowe, D.2    Bedworth, M.D.3
  • 191
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: perceptron, madaline, and backpropagation
    • Sept.
    • B. Widrow and M.A. Lehr. 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc. IEEE, 78(9):1415-1442, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 192
    • 0004113431 scopus 로고
    • Adaptive Signal Processing
    • Prentice Hall, Englewood Cliffs, NJ
    • B. Widrow and S.D. Stearns. Adaptive Signal Processing. Prentice Hall, Englewood Cliffs, NJ, 1985.
    • (1985)
    • Widrow, B.1    Stearns, S.D.2
  • 193
    • 0003660674 scopus 로고
    • The Algebraic EigenvalueProblem
    • Clarendon Press, Oxford, UK
    • J.H. Wilkinson. The Algebraic EigenvalueProblem. Clarendon Press, Oxford, UK, 1965.
    • (1965)
    • Wilkinson, J.H.1
  • 194
    • 0000280443 scopus 로고
    • Neural nets fordual subspace pattern recognition method
    • L. Xu, A. Krzyzak, and E. Oja. Neural nets fordual subspace pattern recognition method. Int. J. Neural Syst., (3):169-184, 1991.
    • (1991) Int. J. Neural Syst. , Issue.3 , pp. 169-184
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 195
    • 0026745682 scopus 로고
    • Modified Hebbian learningfor curve and surface fitting
    • L. Xu, E. Oja, and C. Suen. Modified Hebbian learningfor curve and surface fitting. Neural Netw., :441-457, 1992.
    • (1992) Neural Netw. , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.3
  • 196
    • 0024754712 scopus 로고
    • A survey ofconjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix
    • Oct.
    • X. Yang, T.K. Sarkar, and E. Arvas. A survey ofconjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix. IEEE Trans. Acoust., Speech Signal Process., 7(10):1550-1556, Oct. 1989.
    • (1989) IEEE Trans. Acoust., Speech Signal Process. , vol.7 , Issue.10 , pp. 1550-1556
    • Yang, X.1    Sarkar, T.K.2    Arvas, E.3
  • 197
    • 0001630598 scopus 로고
    • Least squares fittingof a straight line
    • D. York. Least squares fittingof a straight line. Can. J. Phys., 4:1079-1086, 1966.
    • (1966) Can. J. Phys. , vol.4 , pp. 1079-1086
    • York, D.1
  • 198
    • 0015604721 scopus 로고
    • Applications of adaptivearrays to suppress strong jammers in the presence of weak signals
    • Mar.
    • C.L. Zahm. Applications of adaptivearrays to suppress strong jammers in the presence of weak signals. IEEE Trans. Aerosp. Electron. Syst., 9:260-271, Mar. 1973.
    • (1973) IEEE Trans. Aerosp. Electron. Syst. , vol.9 , pp. 260-271
    • Zahm, C.L.1
  • 199
    • 0037856577 scopus 로고    scopus 로고
    • Matrix Theory
    • Springer-Verlag, New York
    • F. Zhang. Matrix Theory. Springer-Verlag, New York, 1999.
    • (1999)
    • Zhang, F.1
  • 200
    • 0031106975 scopus 로고    scopus 로고
    • Iterative total leastsquaresimage reconstruction algorithm for optical tomography by the conjugate gradient method
    • Apr.
    • W. Zhu, Y. Wang, Y. Yao, J. Chang, L. Graber, and R. Barbour. Iterative total leastsquaresimage reconstruction algorithm for optical tomography by the conjugate gradient method. J. Opt. Soc. Am. A, 14(4):799-807, Apr. 1997.
    • (1997) J. Opt. Soc. Am. A , vol.14 , Issue.4 , pp. 799-807
    • Zhu, W.1    Wang, Y.2    Yao, Y.3    Chang, J.4    Graber, L.5    Barbour, R.6
  • 202
    • 0024679982 scopus 로고
    • Sensor array signal processing via a Procrustes rotations based eigenanalysis of the ESPRIT data pencil
    • M.D. Zoltowski and D. Stavrinides. Sensor array signalprocessing via a Procrustes rotations based eigenanalysis of the ESPRIT data pencil. IEEE Trans. Acoust. Speech Signal Process., 7:832-861, 1989.
    • (1989) IEEE Trans. Acoust. Speech Signal Process. , vol.7 , pp. 832-861
    • Zoltowski, M.D.1    Stavrinides, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.