-
1
-
-
9644300915
-
The proteasome: A proteolytic nanomachine of cell regulation and waste disposal
-
Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta. 2004; 1695(1-3):19-31.
-
(2004)
Biochim Biophys Acta
, vol.1695
, Issue.1-3
, pp. 19-31
-
-
Wolf, D.H.1
Hilt, W.2
-
2
-
-
20444399163
-
The regulation of proteasome degradation by multi-ubiquitin chain binding proteins
-
Miller J, Gordon C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins. FEBS Lett. 2005;579(15): 3224-3230.
-
(2005)
FEBS Lett
, vol.579
, Issue.15
, pp. 3224-3230
-
-
Miller, J.1
Gordon, C.2
-
3
-
-
0142199959
-
Feeding the machine: Mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins
-
Crews CM. Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins. Curr Opin Chem Biol. 2003;7(5):534-539.
-
(2003)
Curr Opin Chem Biol
, vol.7
, Issue.5
, pp. 534-539
-
-
Crews, C.M.1
-
4
-
-
79151472282
-
Structure characterization of the 26S proteasome
-
Kim HM, Yu Y, Cheng Y. Structure characterization of the 26S proteasome. Biochim Biophys Acta. 2011;1809(2):67-79.
-
(2011)
Biochim Biophys Acta
, vol.1809
, Issue.2
, pp. 67-79
-
-
Kim, H.M.1
Yu, Y.2
Cheng, Y.3
-
5
-
-
81255179936
-
The 26S proteasome complex: An attractive target for cancer therapy
-
Frankland-Searby S, Bhaumik SR. The 26S proteasome complex: an attractive target for cancer therapy. Biochim Biophys Acta. 2012;1825(1):64-76.
-
(2012)
Biochim Biophys Acta
, vol.1825
, Issue.1
, pp. 64-76
-
-
Frankland-Searby, S.1
Bhaumik, S.R.2
-
6
-
-
77952420148
-
Proteasome inhibition: A new therapeutic strategy to cancer treatment
-
Wu WKK, Cho CH, Lee CW, et al. Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett. 2010;293(1):15-22.
-
(2010)
Cancer Lett
, vol.293
, Issue.1
, pp. 15-22
-
-
Wu, W.K.K.1
Cho, C.H.2
Lee, C.W.3
-
7
-
-
13944267647
-
Mechanisms of delivery of ubiquitylated proteins to the proteasome: New target for anti-cancer therapy?
-
Farras R, Bossis G, Andermarcher E, Jariel-Encontre I, Piechaczyk M. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit Rev Oncol Hematol. 2005;54(1): 31-51.
-
(2005)
Crit Rev Oncol Hematol
, vol.54
, Issue.1
, pp. 31-51
-
-
Farras, R.1
Bossis, G.2
Andermarcher, E.3
Jariel-Encontre, I.4
Piechaczyk, M.5
-
9
-
-
33645470112
-
Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells
-
Codony-Servat J, Tapia MA, Bosch M, et al. Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells. Mol Cancer Ther. 2006;5(3):665-675.
-
(2006)
Mol Cancer Ther
, vol.5
, Issue.3
, pp. 665-675
-
-
Codony-Servat, J.1
Tapia, M.A.2
Bosch, M.3
-
10
-
-
84860436602
-
Advances in the understanding of mechanisms and therapeutic use of bortezomib
-
Mujtaba T, Dou QP. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov Med. 2011;12(67):471-480.
-
(2011)
Discov Med
, vol.12
, Issue.67
, pp. 471-480
-
-
Mujtaba, T.1
Dou, Q.P.2
-
11
-
-
37249085621
-
Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells
-
Xu H, Ju D, Jarois T, Xie Y. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Res Treat. 2008;107(2):267-274.
-
(2008)
Breast Cancer Res Treat
, vol.107
, Issue.2
, pp. 267-274
-
-
Xu, H.1
Ju, D.2
Jarois, T.3
Xie, Y.4
-
12
-
-
77449158252
-
Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types
-
Ling X, Calinski D, Chanan-Khan AA, Zhou M, Li F. Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types. J Exp Clin Cancer Res. 2010;29:8.
-
(2010)
J Exp Clin Cancer Res
, vol.29
, pp. 8
-
-
Ling, X.1
Calinski, D.2
Chanan-Khan, A.A.3
Zhou, M.4
Li, F.5
-
13
-
-
67651154326
-
Proteomic identification of aldo-keto reductase AKR1B10 induction after treatment of colorectal cancer cells with the proteasome inhibitor bortezomib
-
Loeffler-Ragg J, Mueller D, Gamerith G, et al. Proteomic identification of aldo-keto reductase AKR1B10 induction after treatment of colorectal cancer cells with the proteasome inhibitor bortezomib. Mol Cancer Ther. 2009;8(7):1995-2006.
-
(2009)
Mol Cancer Ther
, vol.8
, Issue.7
, pp. 1995-2006
-
-
Loeffler-Ragg, J.1
Mueller, D.2
Gamerith, G.3
-
14
-
-
83955162364
-
Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer
-
de Wilt LH, Jansen G, Assaraf YG, et al. Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochem Pharmacol. 2012;83(2):207-217.
-
(2012)
Biochem Pharmacol
, vol.83
, Issue.2
, pp. 207-217
-
-
de Wilt, L.H.1
Jansen, G.2
Assaraf, Y.G.3
-
15
-
-
79955966973
-
Noxa/Bcl-2 protein interactions contribute to bortezomib resistance in human lymphoid cells
-
Smith AJ, Dai H, Correia C, et al. Noxa/Bcl-2 protein interactions contribute to bortezomib resistance in human lymphoid cells. J Biol Chem. 2011;286(20):17682-17692.
-
(2011)
J Biol Chem
, vol.286
, Issue.20
, pp. 17682-17692
-
-
Smith, A.J.1
Dai, H.2
Correia, C.3
-
16
-
-
33745169658
-
Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib
-
Shringarpure R, Catley L, Bhole D, et al. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol. 2006;134(2):145-156.
-
(2006)
Br J Haematol
, vol.134
, Issue.2
, pp. 145-156
-
-
Shringarpure, R.1
Catley, L.2
Bhole, D.3
-
17
-
-
0031966435
-
Heat exposure and drugs. A review of the effects of hyperthermia on pharmacokinetics
-
Vanakoski J, Seppala T. Heat exposure and drugs. A review of the effects of hyperthermia on pharmacokinetics. Clin Pharmacokinet. 1998;34(4):311-322.
-
(1998)
Clin Pharmacokinet
, vol.34
, Issue.4
, pp. 311-322
-
-
Vanakoski, J.1
Seppala, T.2
-
18
-
-
80052066877
-
Proteotoxic stress targeted therapy (PSTT): Induction of protein misfolding enhances the antitumor effect of the proteasome inhibitor bortezomib
-
Neznanov N, Komarov AP, Neznanova L, Stanhope-Baker P, Gudkov AV. Proteotoxic stress targeted therapy (PSTT): induction of protein misfolding enhances the antitumor effect of the proteasome inhibitor bortezomib. Oncotarget. 2011;2(3):209-221.
-
(2011)
Oncotarget
, vol.2
, Issue.3
, pp. 209-221
-
-
Neznanov, N.1
Komarov, A.P.2
Neznanova, L.3
Stanhope-Baker, P.4
Gudkov, A.V.5
-
19
-
-
70349918746
-
Combination of hyperthermia and bortezomib results in additive killing in mantle cell lymphoma cells
-
Milani V, Lorenz M, Weinkauf M, et al. Combination of hyperthermia and bortezomib results in additive killing in mantle cell lymphoma cells. Int J Hyperthermia. 2009;25(4):262-272.
-
(2009)
Int J Hyperthermia
, vol.25
, Issue.4
, pp. 262-272
-
-
Milani, V.1
Lorenz, M.2
Weinkauf, M.3
-
20
-
-
38649088879
-
Cellular responses to hyperthermia (40-46 degrees C): Cell killing and molecular events
-
Roti Roti JL. Cellular responses to hyperthermia (40-46 degrees C): cell killing and molecular events. Int J Hyperthermia. 2008;24(1):3-15.
-
(2008)
Int J Hyperthermia
, vol.24
, Issue.1
, pp. 3-15
-
-
Roti Roti, J.L.1
-
21
-
-
0036339812
-
Hyperthermia in combined treatment of cancer
-
Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487-497.
-
(2002)
Lancet Oncol
, vol.3
, Issue.8
, pp. 487-497
-
-
Wust, P.1
Hildebrandt, B.2
Sreenivasa, G.3
-
22
-
-
34250864957
-
Thermal therapy, part 2: Hyperthermia techniques
-
Habash RW, Bansal R, Krewski D, Alhafid HT. Thermal therapy, part 2: hyperthermia techniques. Crit Rev Biomed Eng. 2006;34(6):491-542.
-
(2006)
Crit Rev Biomed Eng
, vol.34
, Issue.6
, pp. 491-542
-
-
Habash, R.W.1
Bansal, R.2
Krewski, D.3
Alhafid, H.T.4
-
23
-
-
77955650031
-
Nanomedicine: Magnetic nanoparticles and their biomedical applications
-
Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, Li CZ. Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem. 2010;17(27):3120-3141.
-
(2010)
Curr Med Chem
, vol.17
, Issue.27
, pp. 3120-3141
-
-
Banerjee, R.1
Katsenovich, Y.2
Lagos, L.3
McIintosh, M.4
Zhang, X.5
Li, C.Z.6
-
24
-
-
70350151561
-
Applications of magnetic nanoparticles in medicine: Magnetic fluid hyperthermia
-
Latorre M, Rinaldi C. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. P R Health Sci J. 2009;28(3): 227-238.
-
(2009)
P R Health Sci J
, vol.28
, Issue.3
, pp. 227-238
-
-
Latorre, M.1
Rinaldi, C.2
-
25
-
-
80052063378
-
Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles
-
Rodriguez-Luccioni HL, Latorre-Esteves M, Mendez-Vega J, et al. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int J Nanomedicine. 2011;6:373-380.
-
(2011)
Int J Nanomedicine
, vol.6
, pp. 373-380
-
-
Rodriguez-Luccioni, H.L.1
Latorre-Esteves, M.2
Mendez-Vega, J.3
-
26
-
-
80051591595
-
Hyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinum
-
Lee JS, Rodriguez-Luccioni HL, Mendez J, et al. Hyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinum. J Nanosci Nanotechnol. 2011;11(5):4153-4157.
-
(2011)
J Nanosci Nanotechnol
, vol.11
, Issue.5
, pp. 4153-4157
-
-
Lee, J.S.1
Rodriguez-Luccioni, H.L.2
Mendez, J.3
-
27
-
-
84875020151
-
Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity
-
Alvarez-Berrios MP, Castillo A, Rinaldi C, Soto O, Rinaldi C, Torres-Lugo M. Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity. Int J Nanomedicine. 2013;8:1-11.
-
(2013)
Int J Nanomedicine
, vol.8
, pp. 1-11
-
-
Alvarez-Berrios, M.P.1
Castillo, A.2
Rinaldi, C.3
Soto, O.4
Rinaldi, C.5
Torres-Lugo, M.6
-
28
-
-
48249148758
-
Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran
-
Herrera AP, Barrera C, Rinaldi C. Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran. J Mater Chem. 2008;18(31):3650-3654.
-
(2008)
J Mater Chem
, vol.18
, Issue.31
, pp. 3650-3654
-
-
Herrera, A.P.1
Barrera, C.2
Rinaldi, C.3
-
29
-
-
80053327702
-
EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise
-
Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano. 2011;5(9):7124-7129.
-
(2011)
ACS Nano
, vol.5
, Issue.9
, pp. 7124-7129
-
-
Creixell, M.1
Bohorquez, A.C.2
Torres-Lugo, M.3
Rinaldi, C.4
-
30
-
-
19644388720
-
Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells
-
Pajonk F, van Ophoven A, McBride WH. Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res. 2005;65(11):4836-4843.
-
(2005)
Cancer Res
, vol.65
, Issue.11
, pp. 4836-4843
-
-
Pajonk, F.1
van Ophoven, A.2
McBride, W.H.3
-
32
-
-
0021742214
-
Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA
-
Bodell WJ, Cleaver JE, Roti Roti JL. Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA. Radiat Res. 1984;100(1):87-95.
-
(1984)
Radiat Res
, vol.100
, Issue.1
, pp. 87-95
-
-
Bodell, W.J.1
Cleaver, J.E.2
Roti Roti, J.L.3
-
33
-
-
0029610285
-
Increased c-fos expression associated with hyperthermia-induced apoptosis of a Burkitt lymphoma cell line
-
Cummings M. Increased c-fos expression associated with hyperthermia-induced apoptosis of a Burkitt lymphoma cell line. Int J Radiat Biol. 1995;68(6):687-692.
-
(1995)
Int J Radiat Biol
, vol.68
, Issue.6
, pp. 687-692
-
-
Cummings, M.1
-
34
-
-
0036295978
-
The cellular and molecular basis of hyperthermia
-
Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33-56.
-
(2002)
Crit Rev Oncol Hematol
, vol.43
, Issue.1
, pp. 33-56
-
-
Hildebrandt, B.1
Wust, P.2
Ahlers, O.3
-
35
-
-
84879661776
-
Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields
-
Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano. 7(6):5091-5101.
-
ACS Nano
, vol.7
, Issue.6
, pp. 5091-5101
-
-
Domenech, M.1
Marrero-Berrios, I.2
Torres-Lugo, M.3
Rinaldi, C.4
-
36
-
-
53049106912
-
25 (PSMB5) gene mutation and overexpression of PSMB5 protein
-
Oerlemans R, Franke NE, Assaraf YG, et al. Molecular basis of bortezomib resistance: proteasome subunit Î25 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008;112(6): 2489-2499.
-
(2008)
Blood
, vol.112
, Issue.6
, pp. 2489-2499
-
-
Oerlemans, R.1
Franke, N.E.2
Assaraf, Y.G.3
-
37
-
-
34248377893
-
Bortezomib activity and in vitro interactions with anthracyclines and cytarabine in acute myeloid leukemia cells are independent of multidrug resistance mechanisms and p53 status
-
Minderman H, Zhou Y, O'Loughlin K, Baer M. Bortezomib activity and in vitro interactions with anthracyclines and cytarabine in acute myeloid leukemia cells are independent of multidrug resistance mechanisms and p53 status. Cancer Chemother Pharmacol. 2007;60(2):245-255.
-
(2007)
Cancer Chemother Pharmacol
, vol.60
, Issue.2
, pp. 245-255
-
-
Minderman, H.1
Zhou, Y.2
O'Loughlin, K.3
Baer, M.4
-
38
-
-
73149095170
-
The relationship among tumor architecture, pharmacokinetics, pharmacodynamics, and efficacy of bortezomib in mouse xenograft models
-
Williamson MJ, Silva MD, Terkelsen J, et al. The relationship among tumor architecture, pharmacokinetics, pharmacodynamics, and efficacy of bortezomib in mouse xenograft models. Mol Cancer Ther. 2009;8(12):3234-3243.
-
(2009)
Mol Cancer Ther
, vol.8
, Issue.12
, pp. 3234-3243
-
-
Williamson, M.J.1
Silva, M.D.2
Terkelsen, J.3
-
39
-
-
84860234630
-
Proteasome inhibitor bortezomib overcomes P-gp-mediated multidrug resistance in resistant leukemic cell lines
-
Zheng B, Zhou R, Gong Y, Yang X, Shan Q. Proteasome inhibitor bortezomib overcomes P-gp-mediated multidrug resistance in resistant leukemic cell lines. Int J Lab Hematol. 2012;34(3):237-247.
-
(2012)
Int J Lab Hematol
, vol.34
, Issue.3
, pp. 237-247
-
-
Zheng, B.1
Zhou, R.2
Gong, Y.3
Yang, X.4
Shan, Q.5
|