메뉴 건너뛰기




Volumn 9, Issue 1, 2013, Pages 145-153

Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines

Author keywords

BZ; Enhanced cytotoxicity; Hot water hyperthermia; Magnetic fluid hyperthermia; Thermal sensitization

Indexed keywords

BORTEZOMIB; SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLE;

EID: 84891505529     PISSN: 11769114     EISSN: 11782013     Source Type: Journal    
DOI: 10.2147/IJN.S51435     Document Type: Article
Times cited : (43)

References (39)
  • 1
    • 9644300915 scopus 로고    scopus 로고
    • The proteasome: A proteolytic nanomachine of cell regulation and waste disposal
    • Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta. 2004; 1695(1-3):19-31.
    • (2004) Biochim Biophys Acta , vol.1695 , Issue.1-3 , pp. 19-31
    • Wolf, D.H.1    Hilt, W.2
  • 2
    • 20444399163 scopus 로고    scopus 로고
    • The regulation of proteasome degradation by multi-ubiquitin chain binding proteins
    • Miller J, Gordon C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins. FEBS Lett. 2005;579(15): 3224-3230.
    • (2005) FEBS Lett , vol.579 , Issue.15 , pp. 3224-3230
    • Miller, J.1    Gordon, C.2
  • 3
    • 0142199959 scopus 로고    scopus 로고
    • Feeding the machine: Mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins
    • Crews CM. Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins. Curr Opin Chem Biol. 2003;7(5):534-539.
    • (2003) Curr Opin Chem Biol , vol.7 , Issue.5 , pp. 534-539
    • Crews, C.M.1
  • 4
    • 79151472282 scopus 로고    scopus 로고
    • Structure characterization of the 26S proteasome
    • Kim HM, Yu Y, Cheng Y. Structure characterization of the 26S proteasome. Biochim Biophys Acta. 2011;1809(2):67-79.
    • (2011) Biochim Biophys Acta , vol.1809 , Issue.2 , pp. 67-79
    • Kim, H.M.1    Yu, Y.2    Cheng, Y.3
  • 5
    • 81255179936 scopus 로고    scopus 로고
    • The 26S proteasome complex: An attractive target for cancer therapy
    • Frankland-Searby S, Bhaumik SR. The 26S proteasome complex: an attractive target for cancer therapy. Biochim Biophys Acta. 2012;1825(1):64-76.
    • (2012) Biochim Biophys Acta , vol.1825 , Issue.1 , pp. 64-76
    • Frankland-Searby, S.1    Bhaumik, S.R.2
  • 6
    • 77952420148 scopus 로고    scopus 로고
    • Proteasome inhibition: A new therapeutic strategy to cancer treatment
    • Wu WKK, Cho CH, Lee CW, et al. Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett. 2010;293(1):15-22.
    • (2010) Cancer Lett , vol.293 , Issue.1 , pp. 15-22
    • Wu, W.K.K.1    Cho, C.H.2    Lee, C.W.3
  • 7
    • 13944267647 scopus 로고    scopus 로고
    • Mechanisms of delivery of ubiquitylated proteins to the proteasome: New target for anti-cancer therapy?
    • Farras R, Bossis G, Andermarcher E, Jariel-Encontre I, Piechaczyk M. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit Rev Oncol Hematol. 2005;54(1): 31-51.
    • (2005) Crit Rev Oncol Hematol , vol.54 , Issue.1 , pp. 31-51
    • Farras, R.1    Bossis, G.2    Andermarcher, E.3    Jariel-Encontre, I.4    Piechaczyk, M.5
  • 9
    • 33645470112 scopus 로고    scopus 로고
    • Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells
    • Codony-Servat J, Tapia MA, Bosch M, et al. Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells. Mol Cancer Ther. 2006;5(3):665-675.
    • (2006) Mol Cancer Ther , vol.5 , Issue.3 , pp. 665-675
    • Codony-Servat, J.1    Tapia, M.A.2    Bosch, M.3
  • 10
    • 84860436602 scopus 로고    scopus 로고
    • Advances in the understanding of mechanisms and therapeutic use of bortezomib
    • Mujtaba T, Dou QP. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov Med. 2011;12(67):471-480.
    • (2011) Discov Med , vol.12 , Issue.67 , pp. 471-480
    • Mujtaba, T.1    Dou, Q.P.2
  • 11
    • 37249085621 scopus 로고    scopus 로고
    • Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells
    • Xu H, Ju D, Jarois T, Xie Y. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Res Treat. 2008;107(2):267-274.
    • (2008) Breast Cancer Res Treat , vol.107 , Issue.2 , pp. 267-274
    • Xu, H.1    Ju, D.2    Jarois, T.3    Xie, Y.4
  • 12
    • 77449158252 scopus 로고    scopus 로고
    • Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types
    • Ling X, Calinski D, Chanan-Khan AA, Zhou M, Li F. Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types. J Exp Clin Cancer Res. 2010;29:8.
    • (2010) J Exp Clin Cancer Res , vol.29 , pp. 8
    • Ling, X.1    Calinski, D.2    Chanan-Khan, A.A.3    Zhou, M.4    Li, F.5
  • 13
    • 67651154326 scopus 로고    scopus 로고
    • Proteomic identification of aldo-keto reductase AKR1B10 induction after treatment of colorectal cancer cells with the proteasome inhibitor bortezomib
    • Loeffler-Ragg J, Mueller D, Gamerith G, et al. Proteomic identification of aldo-keto reductase AKR1B10 induction after treatment of colorectal cancer cells with the proteasome inhibitor bortezomib. Mol Cancer Ther. 2009;8(7):1995-2006.
    • (2009) Mol Cancer Ther , vol.8 , Issue.7 , pp. 1995-2006
    • Loeffler-Ragg, J.1    Mueller, D.2    Gamerith, G.3
  • 14
    • 83955162364 scopus 로고    scopus 로고
    • Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer
    • de Wilt LH, Jansen G, Assaraf YG, et al. Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochem Pharmacol. 2012;83(2):207-217.
    • (2012) Biochem Pharmacol , vol.83 , Issue.2 , pp. 207-217
    • de Wilt, L.H.1    Jansen, G.2    Assaraf, Y.G.3
  • 15
    • 79955966973 scopus 로고    scopus 로고
    • Noxa/Bcl-2 protein interactions contribute to bortezomib resistance in human lymphoid cells
    • Smith AJ, Dai H, Correia C, et al. Noxa/Bcl-2 protein interactions contribute to bortezomib resistance in human lymphoid cells. J Biol Chem. 2011;286(20):17682-17692.
    • (2011) J Biol Chem , vol.286 , Issue.20 , pp. 17682-17692
    • Smith, A.J.1    Dai, H.2    Correia, C.3
  • 16
    • 33745169658 scopus 로고    scopus 로고
    • Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib
    • Shringarpure R, Catley L, Bhole D, et al. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol. 2006;134(2):145-156.
    • (2006) Br J Haematol , vol.134 , Issue.2 , pp. 145-156
    • Shringarpure, R.1    Catley, L.2    Bhole, D.3
  • 17
    • 0031966435 scopus 로고    scopus 로고
    • Heat exposure and drugs. A review of the effects of hyperthermia on pharmacokinetics
    • Vanakoski J, Seppala T. Heat exposure and drugs. A review of the effects of hyperthermia on pharmacokinetics. Clin Pharmacokinet. 1998;34(4):311-322.
    • (1998) Clin Pharmacokinet , vol.34 , Issue.4 , pp. 311-322
    • Vanakoski, J.1    Seppala, T.2
  • 18
    • 80052066877 scopus 로고    scopus 로고
    • Proteotoxic stress targeted therapy (PSTT): Induction of protein misfolding enhances the antitumor effect of the proteasome inhibitor bortezomib
    • Neznanov N, Komarov AP, Neznanova L, Stanhope-Baker P, Gudkov AV. Proteotoxic stress targeted therapy (PSTT): induction of protein misfolding enhances the antitumor effect of the proteasome inhibitor bortezomib. Oncotarget. 2011;2(3):209-221.
    • (2011) Oncotarget , vol.2 , Issue.3 , pp. 209-221
    • Neznanov, N.1    Komarov, A.P.2    Neznanova, L.3    Stanhope-Baker, P.4    Gudkov, A.V.5
  • 19
    • 70349918746 scopus 로고    scopus 로고
    • Combination of hyperthermia and bortezomib results in additive killing in mantle cell lymphoma cells
    • Milani V, Lorenz M, Weinkauf M, et al. Combination of hyperthermia and bortezomib results in additive killing in mantle cell lymphoma cells. Int J Hyperthermia. 2009;25(4):262-272.
    • (2009) Int J Hyperthermia , vol.25 , Issue.4 , pp. 262-272
    • Milani, V.1    Lorenz, M.2    Weinkauf, M.3
  • 20
    • 38649088879 scopus 로고    scopus 로고
    • Cellular responses to hyperthermia (40-46 degrees C): Cell killing and molecular events
    • Roti Roti JL. Cellular responses to hyperthermia (40-46 degrees C): cell killing and molecular events. Int J Hyperthermia. 2008;24(1):3-15.
    • (2008) Int J Hyperthermia , vol.24 , Issue.1 , pp. 3-15
    • Roti Roti, J.L.1
  • 21
    • 0036339812 scopus 로고    scopus 로고
    • Hyperthermia in combined treatment of cancer
    • Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487-497.
    • (2002) Lancet Oncol , vol.3 , Issue.8 , pp. 487-497
    • Wust, P.1    Hildebrandt, B.2    Sreenivasa, G.3
  • 24
    • 70350151561 scopus 로고    scopus 로고
    • Applications of magnetic nanoparticles in medicine: Magnetic fluid hyperthermia
    • Latorre M, Rinaldi C. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. P R Health Sci J. 2009;28(3): 227-238.
    • (2009) P R Health Sci J , vol.28 , Issue.3 , pp. 227-238
    • Latorre, M.1    Rinaldi, C.2
  • 25
    • 80052063378 scopus 로고    scopus 로고
    • Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles
    • Rodriguez-Luccioni HL, Latorre-Esteves M, Mendez-Vega J, et al. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int J Nanomedicine. 2011;6:373-380.
    • (2011) Int J Nanomedicine , vol.6 , pp. 373-380
    • Rodriguez-Luccioni, H.L.1    Latorre-Esteves, M.2    Mendez-Vega, J.3
  • 26
    • 80051591595 scopus 로고    scopus 로고
    • Hyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinum
    • Lee JS, Rodriguez-Luccioni HL, Mendez J, et al. Hyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinum. J Nanosci Nanotechnol. 2011;11(5):4153-4157.
    • (2011) J Nanosci Nanotechnol , vol.11 , Issue.5 , pp. 4153-4157
    • Lee, J.S.1    Rodriguez-Luccioni, H.L.2    Mendez, J.3
  • 27
    • 84875020151 scopus 로고    scopus 로고
    • Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity
    • Alvarez-Berrios MP, Castillo A, Rinaldi C, Soto O, Rinaldi C, Torres-Lugo M. Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity. Int J Nanomedicine. 2013;8:1-11.
    • (2013) Int J Nanomedicine , vol.8 , pp. 1-11
    • Alvarez-Berrios, M.P.1    Castillo, A.2    Rinaldi, C.3    Soto, O.4    Rinaldi, C.5    Torres-Lugo, M.6
  • 28
    • 48249148758 scopus 로고    scopus 로고
    • Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran
    • Herrera AP, Barrera C, Rinaldi C. Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran. J Mater Chem. 2008;18(31):3650-3654.
    • (2008) J Mater Chem , vol.18 , Issue.31 , pp. 3650-3654
    • Herrera, A.P.1    Barrera, C.2    Rinaldi, C.3
  • 29
    • 80053327702 scopus 로고    scopus 로고
    • EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise
    • Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano. 2011;5(9):7124-7129.
    • (2011) ACS Nano , vol.5 , Issue.9 , pp. 7124-7129
    • Creixell, M.1    Bohorquez, A.C.2    Torres-Lugo, M.3    Rinaldi, C.4
  • 30
    • 19644388720 scopus 로고    scopus 로고
    • Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells
    • Pajonk F, van Ophoven A, McBride WH. Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res. 2005;65(11):4836-4843.
    • (2005) Cancer Res , vol.65 , Issue.11 , pp. 4836-4843
    • Pajonk, F.1    van Ophoven, A.2    McBride, W.H.3
  • 31
  • 32
    • 0021742214 scopus 로고
    • Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA
    • Bodell WJ, Cleaver JE, Roti Roti JL. Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA. Radiat Res. 1984;100(1):87-95.
    • (1984) Radiat Res , vol.100 , Issue.1 , pp. 87-95
    • Bodell, W.J.1    Cleaver, J.E.2    Roti Roti, J.L.3
  • 33
    • 0029610285 scopus 로고
    • Increased c-fos expression associated with hyperthermia-induced apoptosis of a Burkitt lymphoma cell line
    • Cummings M. Increased c-fos expression associated with hyperthermia-induced apoptosis of a Burkitt lymphoma cell line. Int J Radiat Biol. 1995;68(6):687-692.
    • (1995) Int J Radiat Biol , vol.68 , Issue.6 , pp. 687-692
    • Cummings, M.1
  • 34
    • 0036295978 scopus 로고    scopus 로고
    • The cellular and molecular basis of hyperthermia
    • Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33-56.
    • (2002) Crit Rev Oncol Hematol , vol.43 , Issue.1 , pp. 33-56
    • Hildebrandt, B.1    Wust, P.2    Ahlers, O.3
  • 35
    • 84879661776 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields
    • Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano. 7(6):5091-5101.
    • ACS Nano , vol.7 , Issue.6 , pp. 5091-5101
    • Domenech, M.1    Marrero-Berrios, I.2    Torres-Lugo, M.3    Rinaldi, C.4
  • 36
    • 53049106912 scopus 로고    scopus 로고
    • 25 (PSMB5) gene mutation and overexpression of PSMB5 protein
    • Oerlemans R, Franke NE, Assaraf YG, et al. Molecular basis of bortezomib resistance: proteasome subunit Î25 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008;112(6): 2489-2499.
    • (2008) Blood , vol.112 , Issue.6 , pp. 2489-2499
    • Oerlemans, R.1    Franke, N.E.2    Assaraf, Y.G.3
  • 37
    • 34248377893 scopus 로고    scopus 로고
    • Bortezomib activity and in vitro interactions with anthracyclines and cytarabine in acute myeloid leukemia cells are independent of multidrug resistance mechanisms and p53 status
    • Minderman H, Zhou Y, O'Loughlin K, Baer M. Bortezomib activity and in vitro interactions with anthracyclines and cytarabine in acute myeloid leukemia cells are independent of multidrug resistance mechanisms and p53 status. Cancer Chemother Pharmacol. 2007;60(2):245-255.
    • (2007) Cancer Chemother Pharmacol , vol.60 , Issue.2 , pp. 245-255
    • Minderman, H.1    Zhou, Y.2    O'Loughlin, K.3    Baer, M.4
  • 38
    • 73149095170 scopus 로고    scopus 로고
    • The relationship among tumor architecture, pharmacokinetics, pharmacodynamics, and efficacy of bortezomib in mouse xenograft models
    • Williamson MJ, Silva MD, Terkelsen J, et al. The relationship among tumor architecture, pharmacokinetics, pharmacodynamics, and efficacy of bortezomib in mouse xenograft models. Mol Cancer Ther. 2009;8(12):3234-3243.
    • (2009) Mol Cancer Ther , vol.8 , Issue.12 , pp. 3234-3243
    • Williamson, M.J.1    Silva, M.D.2    Terkelsen, J.3
  • 39
    • 84860234630 scopus 로고    scopus 로고
    • Proteasome inhibitor bortezomib overcomes P-gp-mediated multidrug resistance in resistant leukemic cell lines
    • Zheng B, Zhou R, Gong Y, Yang X, Shan Q. Proteasome inhibitor bortezomib overcomes P-gp-mediated multidrug resistance in resistant leukemic cell lines. Int J Lab Hematol. 2012;34(3):237-247.
    • (2012) Int J Lab Hematol , vol.34 , Issue.3 , pp. 237-247
    • Zheng, B.1    Zhou, R.2    Gong, Y.3    Yang, X.4    Shan, Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.