메뉴 건너뛰기




Volumn 56, Issue 1, 2014, Pages 44-68

Clustering in linear-mixed models with a group fused lasso penalty

Author keywords

EM algorithm; Fused lasso; Group lasso; Linear mixed models; Longitudinal data

Indexed keywords

CLUSTERING ALGORITHMS; RANDOM PROCESSES;

EID: 84891488746     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201200111     Document Type: Article
Times cited : (16)

References (44)
  • 2
    • 84897149362 scopus 로고    scopus 로고
    • lme4: Linear mixed-effects models using S4 classes
    • R package version 0.999999-0.
    • Bates, D. M., Maechler, M. and Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0.
    • (2012)
    • Bates, D.M.1    Maechler, M.2    Bolker, B.3
  • 4
    • 84858860574 scopus 로고    scopus 로고
    • Predictive cross-validation for the choice of linear mixed-effects models with application to data from the swiss HIV cohort study
    • Braun, J., Held, L. and Ledergerber, B. (2012). Predictive cross-validation for the choice of linear mixed-effects models with application to data from the swiss HIV cohort study. Biometrics 68, 53-61.
    • (2012) Biometrics , vol.68 , pp. 53-61
    • Braun, J.1    Held, L.2    Ledergerber, B.3
  • 6
    • 26844458204 scopus 로고    scopus 로고
    • Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
    • Celeux, G., Martin, O. and Lavergne, C. (2005). Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments. Statistical Modelling 5, 243-267.
    • (2005) Statistical Modelling , vol.5 , pp. 243-267
    • Celeux, G.1    Martin, O.2    Lavergne, C.3
  • 10
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics 7, 1-26.
    • (1979) The Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 13
    • 85163255347 scopus 로고    scopus 로고
    • C. M. Bishop and B. J. Frey (Eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. Key West, FL.
    • Gaffney, S. J. and Smyth, P. (2003). Curve clustering with random effects regression mixtures. In: C. M. Bishop and B. J. Frey (Eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. Key West, FL.
    • (2003) Curve clustering with random effects regression mixtures
    • Gaffney, S.J.1    Smyth, P.2
  • 14
    • 78651278795 scopus 로고    scopus 로고
    • On the behaviour of marginal and conditional AIC in linear mixed models
    • Greven, S. and Kneib, T. (2010). On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika 97, 773-789.
    • (2010) Biometrika , vol.97 , pp. 773-789
    • Greven, S.1    Kneib, T.2
  • 15
    • 84873978035 scopus 로고    scopus 로고
    • Clustmixed: clustering in linear and additive mixed models
    • R package version 1.0.
    • Heinzl, F. (2012). Clustmixed: clustering in linear and additive mixed models. R package version 1.0.
    • (2012)
    • Heinzl, F.1
  • 16
    • 84873948659 scopus 로고    scopus 로고
    • Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm
    • Heinzl, F. and Tutz, G. (2013). Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm. Statistical Modelling 13, 41-67.
    • (2013) Statistical Modelling , vol.13 , pp. 41-67
    • Heinzl, F.1    Tutz, G.2
  • 18
    • 78650252493 scopus 로고    scopus 로고
    • Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution
    • Komárek, A., Hansen, B. E., Kuiper, E. M. M., van Buuren, H. R. and Lesaffre, E. (2010). Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution. Statistics in Medicine 29, 3267-3283.
    • (2010) Statistics in Medicine , vol.29 , pp. 3267-3283
    • Komárek, A.1    Hansen, B.E.2    Kuiper, E.M.M.3    van Buuren, H.R.4    Lesaffre, E.5
  • 19
    • 84876025228 scopus 로고    scopus 로고
    • Clustering for multivariate continuous and discrete longitudinal data
    • Komárek, A. and Komárková, L. (2013). Clustering for multivariate continuous and discrete longitudinal data. The Annals of Applied Statistics 7, 177-200.
    • (2013) The Annals of Applied Statistics , vol.7 , pp. 177-200
    • Komárek, A.1    Komárková, L.2
  • 20
    • 40249084540 scopus 로고    scopus 로고
    • Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution
    • Komárek, A. and Lesaffre, E. (2008). Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution. Computational Statistics and Data Analysis 52, 3441-3458.
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 3441-3458
    • Komárek, A.1    Lesaffre, E.2
  • 21
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 23
    • 84950419603 scopus 로고
    • Newton-Raphson and EM algorithms for linear mixed effects models for repeated measures data
    • Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algorithms for linear mixed effects models for repeated measures data. Journal of the American Statistical Association 83, 1014-1022.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 1014-1022
    • Lindstrom, M.J.1    Bates, D.M.2
  • 24
    • 58549098884 scopus 로고    scopus 로고
    • Simultaneous curve registration and clustering for functional data
    • Liu, X. and Yang, M. C. K. (2009). Simultaneous curve registration and clustering for functional data. Computational Statistics & Data Analysis 53, 1361-1376.
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 1361-1376
    • Liu, X.1    Yang, M.C.K.2
  • 25
    • 0037687725 scopus 로고    scopus 로고
    • Approximate cross-validatory predictive checks in disease mapping models
    • Marshall, E. C. and Spiegelhalter, D. J. (2003). Approximate cross-validatory predictive checks in disease mapping models. Statistics in Medicine 22, 1649-1660.
    • (2003) Statistics in Medicine , vol.22 , pp. 1649-1660
    • Marshall, E.C.1    Spiegelhalter, D.J.2
  • 27
    • 84891483190 scopus 로고    scopus 로고
    • Humboldt-University Berlin: Center for Applied Statistics and Economics, Berlin, Germany.
    • McLachlan, G. J., Krishnan, T. and Ng, S. K. (2004). The EM Algorithm. Humboldt-University Berlin: Center for Applied Statistics and Economics, Berlin, Germany.
    • (2004) The EM Algorithm
    • McLachlan, G.J.1    Krishnan, T.2    Ng, S.K.3
  • 29
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. Computer Journal 7, 308-313.
    • (1965) Computer Journal , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 30
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with random-effects components for clustering correlated gene-expression profiles
    • Ng, S. K., McLachlan, G. J., Wang, K., Ben-Tovim Jones, L. and Ng, S.-W. (2006). A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22, 1745-1752.
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.K.1    McLachlan, G.J.2    Wang, K.3    Ben-Tovim Jones, L.4    Ng, S.-W.5
  • 31
    • 0000846686 scopus 로고
    • Algorithms AS 47: function minimization using a simplex procedure
    • O'Neill, R. (1971). Algorithms AS 47: function minimization using a simplex procedure. Journal of the Royal Statistical Society C20, 338-345.
    • (1971) Journal of the Royal Statistical Society , vol.20 C , pp. 338-345
    • O'Neill, R.1
  • 32
    • 82055193422 scopus 로고    scopus 로고
    • Multivariate generalized linear mixed models with semi-nonparametric and smooth nonparametric random effects densities
    • Papageorgiou, G. and Hinde, J. (2012). Multivariate generalized linear mixed models with semi-nonparametric and smooth nonparametric random effects densities. Statistics and Computing 22, 79-92.
    • (2012) Statistics and Computing , vol.22 , pp. 79-92
    • Papageorgiou, G.1    Hinde, J.2
  • 33
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
    • R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
    • (2012) R: A Language and Environment for Statistical Computing
  • 35
    • 77949514786 scopus 로고    scopus 로고
    • Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects
    • Scharl, T., Grün, B. and Leisch, F. (2010). Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects. Bioinformatics 26, 370-377.
    • (2010) Bioinformatics , vol.26 , pp. 370-377
    • Scharl, T.1    Grün, B.2    Leisch, F.3
  • 38
    • 21644476631 scopus 로고    scopus 로고
    • Conditional Akaike information for mixed-effects models
    • Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika 92, 351-370.
    • (2005) Biometrika , vol.92 , pp. 351-370
    • Vaida, F.1    Blanchard, S.2
  • 39
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 91, 217-221.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 40
    • 0033450787 scopus 로고    scopus 로고
    • The effect of drop-out on the efficiency of longitudinal experiments
    • Verbeke, G. and Lesaffre, E. (1999). The effect of drop-out on the efficiency of longitudinal experiments. Applied Statistics 48, 363-375.
    • (1999) Applied Statistics , vol.48 , pp. 363-375
    • Verbeke, G.1    Lesaffre, E.2
  • 43
    • 70449393858 scopus 로고    scopus 로고
    • Cluster analysis using multivariate mixed effects models
    • Villarroel, L., Marshall, G. and Barón, A. E. (2009). Cluster analysis using multivariate mixed effects models. Statistics in Medicine 28, 2552-2565.
    • (2009) Statistics in Medicine , vol.28 , pp. 2552-2565
    • Villarroel, L.1    Marshall, G.2    Barón, A.E.3
  • 44
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society B68, 49-67.
    • (2006) Journal of the Royal Statistical Society , vol.68 B , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.