메뉴 건너뛰기




Volumn 56, Issue 6, 2013, Pages 1377-1386

Identification of pollution sources and classification of apulia region groundwaters by multivariate statistical methods and neural networks

Author keywords

Classification; Cluster analysis; Discriminant function analysis; Forecasting; Groundwaters; Neural networks; Principal component analysis; Source apportionment

Indexed keywords

DISCRIMINANT FUNCTION ANALYSIS; ELECTRICAL CONDUCTIVITY; FERTILIZER APPLICATIONS; MULTIVARIATE STATISTICAL METHOD; MULTIVARIATE STATISTICAL TECHNIQUES; RADIAL BASIS FUNCTION NEURAL NETWORKS; SOURCE APPORTIONMENT; TOTAL DISSOLVED SOLIDS;

EID: 84891423306     PISSN: 21510032     EISSN: None     Source Type: Journal    
DOI: 10.13031/trans.56.9976     Document Type: Article
Times cited : (4)

References (24)
  • 1
    • 0038354623 scopus 로고    scopus 로고
    • Using principal component analysis to monitor spatial and temporal changes in water quality
    • Bengraine, K., and T. F. Marhaba. 2003. Using principal component analysis to monitor spatial and temporal changes in water quality. J. Hazard. Mater. 100(1-3): 179-195.
    • (2003) J. Hazard. Mater. , vol.100 , Issue.1-3 , pp. 179-195
    • Bengraine, K.1    Marhaba, T.F.2
  • 2
    • 33745969552 scopus 로고    scopus 로고
    • A comparison between two receptor models to determine the source apportionment of atmospheric pollutants
    • Caselli, M., G. de Gennaro, and P. Ielpo. 2006. A comparison between two receptor models to determine the source apportionment of atmospheric pollutants. Environmetrics 17(5): 507-516.
    • (2006) Environmetrics , vol.17 , Issue.5 , pp. 507-516
    • Caselli, M.1    De Gennaro, G.2    Ielpo, P.3
  • 3
    • 27144453355 scopus 로고    scopus 로고
    • Orthogonal forward selection for constructing the radial basis function network with tunable nodes
    • Chen, S., X. Hong, and C. J. Harris. 2005. Orthogonal forward selection for constructing the radial basis function network with tunable nodes. Lecture Notes in Computer Sci. 3644: 777-786.
    • (2005) Lecture Notes in Computer Sci , vol.3644 , pp. 777-786
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 4
    • 0020864076 scopus 로고
    • Some observations on the chemical classification of groundwaters
    • D'amore, F., G. Scandiffi, and C. Panichi. 1983. Some observations on the chemical classification of groundwaters. Geothermics 12(2-3): 141-148.
    • (1983) Geothermics , vol.12 , Issue.2-3 , pp. 141-141
    • D'Amore, F.1    Scandiffi, G.2    Panichi, C.3
  • 5
    • 84891446777 scopus 로고    scopus 로고
    • Decreto Ministeriale (Ministerial Directive 23 March 2000: Endorsement of official methods for analyses of waters for agricultural and livestock practices) Rome, Italy: Ministry of Agriculture and Forestry
    • Decreto Ministeriale. 2000. Decreto Ministeriale del 23 Marzo 2000: Approvazione dei "Metodi ufficiali di analisi delle acque per uso agricolo e zootecnico" (Ministerial Directive 23 March 2000: Endorsement of official methods for analyses of waters for agricultural and livestock practices). Rome, Italy: Ministry of Agriculture and Forestry.
    • (2000) Decreto Ministeriale Del 23 Marzo 2000: Approvazione Dei "metodi Ufficiali di Analisi Delle Acque per Uso Agricolo e Zootecnico
  • 6
    • 0030222702 scopus 로고    scopus 로고
    • Review of aquatic monitoring program design
    • Dixon, W., and B. Chiswell. 1996. Review of aquatic monitoring program design. Water Res. 30(9): 1935-1948.
    • (1996) Water Res , vol.30 , Issue.9 , pp. 1935-1948
    • Dixon, W.1    Chiswell, B.2
  • 9
    • 84874778657 scopus 로고    scopus 로고
    • Source apportionment of groundwater pollutants in Apulian agricultural sites using multivariate statistical analyses: Case study of Foggia province
    • doi: 10.1186/1752-153X-6-S2-S5.
    • Ielpo, P., D. Cassano, A. Lopez, G. Pappagallo, and V. F. Uricchio. 2012. Source apportionment of groundwater pollutants in Apulian agricultural sites using multivariate statistical analyses: Case study of Foggia province. Chem. Central J. 6(supp. 2): S5, doi: 10.1186/1752-153X-6-S2-S5.
    • (2012) Chem. Central J. , vol.6 , Issue.SUPPL. 2
    • Ielpo, P.1    Cassano, D.2    Lopez, A.3    Pappagallo, G.4    Uricchio, V.F.5
  • 10
    • 81155133671 scopus 로고    scopus 로고
    • An artificial neural network model for the effects of chicken manure on groundwater
    • Karadurmus, E., M. Cesmeci, M. Yuceer, and R. Berber. 2012. An artificial neural network model for the effects of chicken manure on groundwater. Applied Soft Computing 12(1): 494-497.
    • (2012) Applied Soft Computing , vol.12 , Issue.1 , pp. 494-497
    • Karadurmus, E.1    Cesmeci, M.2    Yuceer, M.3    Berber, R.4
  • 11
    • 32544432091 scopus 로고    scopus 로고
    • Application of chemometrics in river water classification
    • Kowalkowski, T., R. Zbytniewski, J. Szpejna, and B. Buszewski. 2006. Application of chemometrics in river water classification. Water Res. 40(4): 744-752.
    • (2006) Water Res , vol.40 , Issue.4 , pp. 744-752
    • Kowalkowski, T.1    Zbytniewski, R.2    Szpejna, J.3    Buszewski, B.4
  • 12
    • 0043166508 scopus 로고    scopus 로고
    • Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan
    • Liu, C.-W., K.-H. Lin, and Y.-M. Kuo. 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 313(1-3): 77-89.
    • (2003) Sci. Total Environ. , vol.313 , Issue.1-3 , pp. 77-89
    • Liu, C.-W.1    Lin, K.-H.2    Kuo, Y.-M.3
  • 13
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • Maier, H. R., A. Jain, G. C. Dandy, and K. P. Sudheer. 2010. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Software 25(8): 891-909.
    • (2010) Environ. Model. Software , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 14
    • 0034227864 scopus 로고    scopus 로고
    • Probabilistic neuralnetwork structure determination for pattern classification
    • Mao, K., Z. K. C. Tan, and W. Ser. 2000. Probabilistic neuralnetwork structure determination for pattern classification. IEEE Trans. Neural Networks 11(4): 1009-1016.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.4 , pp. 1009-1016
    • Mao, K.1    Tan, Z.K.C.2    Ser, W.3
  • 17
    • 40449138539 scopus 로고    scopus 로고
    • Mining in chemometrics
    • Mutihac, L., and R. Mutihac. 2008. Mining in chemometrics. Anal. Chim. Acta 612(1): 1-18.
    • (2008) Anal. Chim. Acta , vol.612 , Issue.1 , pp. 1-18
    • Mutihac, L.1    Mutihac, R.2
  • 19
    • 33750477712 scopus 로고    scopus 로고
    • Chemometric quality assessment of surface waters: Two case studies
    • Simeonov, V., P. Simeonova, and R. Tsitouridou. 2004. Chemometric quality assessment of surface waters: Two case studies. Ecol. Chem. Eng. 11(6): 450-469.
    • (2004) Ecol. Chem. Eng. , vol.11 , Issue.6 , pp. 450-469
    • Simeonov, V.1    Simeonova, P.2    Tsitouridou, R.3
  • 20
    • 4544340267 scopus 로고    scopus 로고
    • Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): A case study
    • Singh, K. P., A. Malik, D. Mohan, and S. Sinha. 2004. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): A case study. Water Res. 38(18): 3980-3992.
    • (2004) Water Res , vol.38 , Issue.18 , pp. 3980-3992
    • Singh, K.P.1    Malik, A.2    Mohan, D.3    Sinha, S.4
  • 21
    • 17844396212 scopus 로고    scopus 로고
    • Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: A case study
    • Singh, K. P., A. Malik, and S. Sinha. 2005. Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: A case study. Anal. Chim. Acta 538(1-2): 355-374.
    • (2005) Anal. Chim. Acta , vol.538 , Issue.1-2 , pp. 355-374
    • Singh, K.P.1    Malik, A.2    Sinha, S.3
  • 22
    • 0032466495 scopus 로고    scopus 로고
    • MHPT.BAS: A computer program for modified Hill-Piper diagram for classification of groundwater
    • Srinivasa Rao, N. 1998. MHPT.BAS: A computer program for modified Hill-Piper diagram for classification of groundwater. Comput. Geosci. (24)10: 991-1008.
    • (1998) Comput. Geosci. , vol.10 , Issue.24 , pp. 991-1008
    • Srinivasa Rao, N.1
  • 23
    • 0030616407 scopus 로고    scopus 로고
    • Geochemical characterization of ophiolitic soils in a temperate climate: A multivariate statistical approach
    • Vaselli, O., A. Buccianti, C. De Siena, C. Bini, N. Coradossi, and M. Angelone. 1997. Geochemical characterization of ophiolitic soils in a temperate climate: A multivariate statistical approach. Geoderma 75(1-2): 117-133.
    • (1997) Geoderma , vol.75 , Issue.1-2 , pp. 117-133
    • Vaselli, O.1    Buccianti, A.2    De Siena, C.3    Bini, C.4    Coradossi, N.5    Angelone, M.6
  • 24
    • 0034964507 scopus 로고    scopus 로고
    • Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality: A case study, Suquía River basin (Córdoba, Argentina)
    • Wunderlin, D. A., M. D. P. Díaz, M. V. Amé, S. F. Pesce, A. C. Hued, and M. D. L. A. Bistoni. 2001. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality: A case study, Suquía River basin (Córdoba, Argentina). Water Res. 35(12): 2881-2894.
    • (2001) Water Res , vol.35 , Issue.12 , pp. 2881-2894
    • Wunderlin, D.A.1    Díaz, M.D.P.2    Amé, M.V.3    Pesce, S.F.4    Hued, A.C.5    Bistoni, M.D.L.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.