-
1
-
-
23244441408
-
Composition duality principles for mixed variational inequalities
-
G. Alduncin, Composition duality principles for mixed variational inequalities, Math. Comput. Modelling, 41 (2005), pp. 639-654.
-
(2005)
Math. Comput. Modelling
, vol.41
, pp. 639-654
-
-
Alduncin, G.1
-
2
-
-
0039041998
-
Studies in linear and nonlinear programming
-
Stanford University Press, Stanford, CA
-
K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Nonlinear Programming, Stanford Math. Stud. Social Sci., Stanford University Press, Stanford, CA, 1958.
-
(1958)
Stanford Math. Stud. Social Sci.
-
-
Arrow, K.J.1
Hurwicz, L.2
Uzawa, H.3
-
3
-
-
0347211614
-
A general duality principle for the sum of two operators
-
H. Attouch and M. Théra, A general duality principle for the sum of two operators, J. Convex Anal., 3 (1996), pp. 1-24.
-
(1996)
J. Convex Anal.
, vol.3
, pp. 1-24
-
-
Attouch, H.1
Théra, M.2
-
4
-
-
84862884952
-
Attouch-Théra duality revisited: Paramonotonicity and operator splitting
-
H. H. Bauschke, R. I. Boţ, W. L. Hare, and W. M. Moursi, Attouch-Théra duality revisited: Paramonotonicity and operator splitting, J. Approx. Theory, 164 (2012), pp. 1065-1084.
-
(2012)
J. Approx. Theory
, vol.164
, pp. 1065-1084
-
-
Bauschke, H.H.1
Boţ, R.I.2
Hare, W.L.3
Moursi, W.M.4
-
6
-
-
77949571044
-
Conjugate duality in convex optimization
-
Springer, Berlin, Heidelberg
-
R. I. Boţ, Conjugate Duality in Convex Optimization, Lecture Notes in Econom. and Math. Systems 637, Springer, Berlin, Heidelberg, 2010.
-
(2010)
Lecture Notes in Econom. and Math. Systems
, vol.637
-
-
Boţ, R.I.1
-
7
-
-
84856817068
-
Regularity conditions via generalized interiority notions in convex optimization: New achievements and their relation to some classical statements
-
R. I. Boţ and E. R. Csetnek, Regularity conditions via generalized interiority notions in convex optimization: New achievements and their relation to some classical statements, Optimization, 61 (2012), pp. 35-65.
-
(2012)
Optimization
, vol.61
, pp. 35-65
-
-
Boţ, R.I.1
Csetnek, E.R.2
-
9
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learning, 3 (2010), pp. 1-122.
-
(2010)
Found. Trends Mach. Learning
, vol.3
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
10
-
-
84855933316
-
A monotone + skew splitting model for composite monotone inclusions in duality
-
L. M. Briceño-Arias and P. L. Combettes, A monotone + skew splitting model for composite monotone inclusions in duality, SIAM J. Optim., 21 (2011), pp. 1230-1250.
-
(2011)
SIAM J. Optim.
, vol.21
, pp. 1230-1250
-
-
Briceño-Arias, L.M.1
Combettes, P.L.2
-
11
-
-
1242352408
-
An algorithm for total variation minimization and applications
-
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), pp. 89-97.
-
(2004)
J. Math. Imaging Vision
, vol.20
, pp. 89-97
-
-
Chambolle, A.1
-
12
-
-
79953201848
-
A first-order primal-dual algorithm for convex problems with applications to imaging
-
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120-145.
-
(2011)
J. Math. Imaging Vision
, vol.40
, pp. 120-145
-
-
Chambolle, A.1
Pock, T.2
-
13
-
-
84869774172
-
Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators
-
P. L. Combettes and J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Var. Anal., 20 (2012), pp. 307-330.
-
(2012)
Set-Valued Var. Anal.
, vol.20
, pp. 307-330
-
-
Combettes, P.L.1
Pesquet, J.-C.2
-
14
-
-
84967782959
-
On the numerical solution of the heat conduction problem in 2 and 3 space variables
-
J. Douglas and H. H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 421-439.
-
(1956)
Trans. Amer. Math. Soc.
, vol.82
, pp. 421-439
-
-
Douglas, J.1
Rachford, H.H.2
-
15
-
-
0029548475
-
A note on accelerating the Weiszfeld procedure
-
Z. Drezner, A note on accelerating the Weiszfeld procedure, Location Sci., 3 (1995), pp. 275-279.
-
(1995)
Location Sci.
, vol.3
, pp. 275-279
-
-
Drezner, Z.1
-
16
-
-
84892888999
-
Augmented lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results
-
Rutgers University
-
J. Eckstein, Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results, Rutcor Research Report 32-2012, Rutgers University, 2012.
-
(2012)
Rutcor Research Report 32-2012
-
-
Eckstein, J.1
-
17
-
-
0027113845
-
On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
-
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293-318.
-
(1992)
Math. Program.
, vol.55
, pp. 293-318
-
-
Eckstein, J.1
Bertsekas, D.P.2
-
18
-
-
0001871553
-
Smooth methods of multipliers for complementarity problems
-
J. Eckstein and M. C. Ferris, Smooth methods of multipliers for complementarity problems, Math. Program., 86 (1999), pp. 65-90.
-
(1999)
Math. Program.
, vol.86
, pp. 65-90
-
-
Eckstein, J.1
Ferris, M.C.2
-
20
-
-
80051766714
-
A general framework for a class of first order primaldual algorithms for convex optimization in imaging science
-
E. Esser, X. Zhang, and T. F. Chan, A general framework for a class of first order primaldual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), pp. 1015-1046.
-
(2010)
SIAM J. Imaging Sci.
, vol.3
, pp. 1015-1046
-
-
Esser, E.1
Zhang, X.2
Chan, T.F.3
-
21
-
-
84865692740
-
Fast multiple-splitting algorithms for convex optimization
-
D. Goldfarb and S. Ma, Fast multiple-splitting algorithms for convex optimization, SIAM J. Optim., 22 (2012), pp. 533-556.
-
(2012)
SIAM J. Optim.
, vol.22
, pp. 533-556
-
-
Goldfarb, D.1
Ma, S.2
-
22
-
-
0004174559
-
-
North-Holland, Amsterdam
-
R. F. Love, J. G. Morris, and G. O. Wesolowsky, Facilities Location Models and Methods, North-Holland, Amsterdam, 1988.
-
(1988)
Facilities Location Models and Methods
-
-
Love, R.F.1
Morris, J.G.2
Wesolowsky, G.O.3
-
24
-
-
0034403146
-
Dualization of generalized equations of maximal monotone type
-
T. Pennanen, Dualization of generalized equations of maximal monotone type, SIAM J. Optim., 10 (2000), pp. 809-835.
-
(2000)
SIAM J. Optim.
, vol.10
, pp. 809-835
-
-
Pennanen, T.1
-
25
-
-
84972582929
-
On the maximal monotonicity of subdifferential mappings
-
R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33 (1970), pp. 209-216.
-
(1970)
Pacific J. Math.
, vol.33
, pp. 209-216
-
-
Rockafellar, R.T.1
-
27
-
-
0001531775
-
Partial inverse of a monotone operator
-
J. E. Spingarn, Partial inverse of a monotone operator, Appl. Math. Optim., 10 (1983), pp. 247-265.
-
(1983)
Appl. Math. Optim.
, vol.10
, pp. 247-265
-
-
Spingarn, J.E.1
-
28
-
-
0033884548
-
A modified forward-backward splitting method for maximal monotone mappings
-
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), pp. 431-446.
-
(2000)
SIAM J. Control Optim.
, vol.38
, pp. 431-446
-
-
Tseng, P.1
-
29
-
-
84875493148
-
A splitting algorithm for dual monotone inclusions involving cocoercive operators
-
B. C. Vũ, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math., 38 (2013), pp. 667-681.
-
(2013)
Adv. Comput. Math.
, vol.38
, pp. 667-681
-
-
Vũ, B.C.1
-
30
-
-
0000281286
-
Sur le point pour lequel la somme des distances de n points donnes est minimum
-
E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnes est minimum, Tohoku Math. J., 43 (1937), pp. 597-609.
-
(1937)
Tohoku Math. J.
, vol.43
, pp. 597-609
-
-
Weiszfeld, E.1
|