메뉴 건너뛰기




Volumn 253, Issue , 2014, Pages 325-337

FDLBM simulation of magnetic field effect on non-Newtonian blood flow in a cavity driven by the motion of two facing lids

Author keywords

FDLBM; Lid driven cavity; MHD; Non Newtonian blood

Indexed keywords

BLOOD FLOW; FDLBM; FINITE DIFFERENCE LATTICE BOLTZMANN METHOD; LID-DRIVEN CAVITIES; NON-NEWTONIAN; POWER LAW INDEX; POWER LAW MODEL; STUART NUMBER;

EID: 84890842952     PISSN: 00325910     EISSN: 1873328X     Source Type: Journal    
DOI: 10.1016/j.powtec.2013.11.047     Document Type: Article
Times cited : (54)

References (80)
  • 1
    • 0033882554 scopus 로고    scopus 로고
    • Theoretical and experimental study of MHD (magnetohydrodynamic) micropump
    • Jang J., Lee S.S. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors Actuators A 2000, 80:84-89.
    • (2000) Sensors Actuators A , vol.80 , pp. 84-89
    • Jang, J.1    Lee, S.S.2
  • 2
    • 0007605489 scopus 로고    scopus 로고
    • LIGA fabrication and test of a DC type magnetohydrodynamic (MHD) micropump
    • Huang L., et al. LIGA fabrication and test of a DC type magnetohydrodynamic (MHD) micropump. Microsyst. Technol. 2000, 2:235-240.
    • (2000) Microsyst. Technol. , vol.2 , pp. 235-240
    • Huang, L.1
  • 3
    • 0033743245 scopus 로고    scopus 로고
    • An AC magnetohydrodynamic micropump
    • Lemoff A.V., Lee A.P. An AC magnetohydrodynamic micropump. Sensors Actuators B 2000, 63:178-185.
    • (2000) Sensors Actuators B , vol.63 , pp. 178-185
    • Lemoff, A.V.1    Lee, A.P.2
  • 4
    • 0037204021 scopus 로고    scopus 로고
    • Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes
    • Zhong J., Yi M., Bau H.H. Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sensors Actuators A 2002, 96:59-66.
    • (2002) Sensors Actuators A , vol.96 , pp. 59-66
    • Zhong, J.1    Yi, M.2    Bau, H.H.3
  • 5
    • 0037437789 scopus 로고    scopus 로고
    • A magneto-hydrodynamically controlled fluid network
    • Bau H.H., Zhu J., Qian S., Xiang Y. A magneto-hydrodynamically controlled fluid network. Sensors Actuators B 2003, 88:205-216.
    • (2003) Sensors Actuators B , vol.88 , pp. 205-216
    • Bau, H.H.1    Zhu, J.2    Qian, S.3    Xiang, Y.4
  • 6
    • 2342554298 scopus 로고    scopus 로고
    • Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump
    • Wang P.J., Chang C.Y., Chang M.L. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump. Biosens. Bioelectron. 2004, 20:115-121.
    • (2004) Biosens. Bioelectron. , vol.20 , pp. 115-121
    • Wang, P.J.1    Chang, C.Y.2    Chang, M.L.3
  • 7
    • 38049115588 scopus 로고    scopus 로고
    • Characteristic study of MHD pump with channel in rectangular duct
    • Ho Je-Ee Characteristic study of MHD pump with channel in rectangular duct. J. Mar. Sci. Technol. 2007, 15:315-321.
    • (2007) J. Mar. Sci. Technol. , vol.15 , pp. 315-321
    • Ho, J.-E.1
  • 8
    • 49049083354 scopus 로고    scopus 로고
    • High-current density DC magnetohydrodynamics micropump with bubble isolation and release system
    • Nguyen N.T., Kassegne S.K. High-current density DC magnetohydrodynamics micropump with bubble isolation and release system. Microfluid. Nanofluid. 2008, 5:383-393.
    • (2008) Microfluid. Nanofluid. , vol.5 , pp. 383-393
    • Nguyen, N.T.1    Kassegne, S.K.2
  • 9
    • 60049098754 scopus 로고    scopus 로고
    • Magneto-hydrodynamics based microfluidics
    • Qian S., Bau H.H. Magneto-hydrodynamics based microfluidics. Mech. Res. Commun. 2009, 36:10-21.
    • (2009) Mech. Res. Commun. , vol.36 , pp. 10-21
    • Qian, S.1    Bau, H.H.2
  • 10
    • 79951515959 scopus 로고    scopus 로고
    • Development of the MHD micropump with mixing function
    • Kang H.J., Choi B. Development of the MHD micropump with mixing function. Sensors Actuators A Phys. 2011, 165:439-445.
    • (2011) Sensors Actuators A Phys. , vol.165 , pp. 439-445
    • Kang, H.J.1    Choi, B.2
  • 11
    • 84870554646 scopus 로고    scopus 로고
    • Investigation of Prandtl number effect on natural convection MHD in an open cavity by Lattice Boltzmann Method
    • Kefayati GH.R., Gorji M., Ganji D.D., Sajjadi H. Investigation of Prandtl number effect on natural convection MHD in an open cavity by Lattice Boltzmann Method. Eng. Comput. 2013, 30:97-116.
    • (2013) Eng. Comput. , vol.30 , pp. 97-116
    • Kefayati, G.H.R.1    Gorji, M.2    Ganji, D.D.3    Sajjadi, H.4
  • 12
    • 84865204148 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall
    • Kefayati GH.R., Gorji M., Sajjadi H., Ganji D.D. Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall. Sci. Iran. 2012, 19:1053-1065.
    • (2012) Sci. Iran. , vol.19 , pp. 1053-1065
    • Kefayati, G.H.R.1    Gorji, M.2    Sajjadi, H.3    Ganji, D.D.4
  • 13
    • 84871427491 scopus 로고    scopus 로고
    • Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using Lattice Boltzmann method
    • Kefayati GH.R. Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using Lattice Boltzmann method. Int. Commun. Heat Mass Transfer 2013, 40:67-77.
    • (2013) Int. Commun. Heat Mass Transfer , vol.40 , pp. 67-77
    • Kefayati, G.H.R.1
  • 14
    • 84887036037 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field
    • Kefayati GH.R. Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field. Theor. Comput. Fluid Dyn. 2013, 27:865-883.
    • (2013) Theor. Comput. Fluid Dyn. , vol.27 , pp. 865-883
    • Kefayati, G.H.R.1
  • 15
    • 84876978462 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution
    • Kefayati GH.R. Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder Technol. 2013, 243:171-183.
    • (2013) Powder Technol. , vol.243 , pp. 171-183
    • Kefayati, G.H.R.1
  • 16
    • 84890393341 scopus 로고    scopus 로고
    • Simulation of ferrofluid heat dissipation effect on natural convection at an inclined cavity filled kerosene/cobalt utilizing Lattice Boltzmann method
    • Kefayati GH.R. Simulation of ferrofluid heat dissipation effect on natural convection at an inclined cavity filled kerosene/cobalt utilizing Lattice Boltzmann method. Numer. Heat Transfer A 2014, 65:509-530.
    • (2014) Numer. Heat Transfer A , vol.65 , pp. 509-530
    • Kefayati, G.H.R.1
  • 17
    • 84890089755 scopus 로고    scopus 로고
    • Natural convection of ferrofluid in a linearly heated cavity utilizing LBM
    • Kefayati GH.R. Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J. Mol. Liq. 2014, 191:1-9.
    • (2014) J. Mol. Liq. , vol.191 , pp. 1-9
    • Kefayati, G.H.R.1
  • 18
    • 84869089967 scopus 로고    scopus 로고
    • Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method
    • Ashorynejad H.R., Mohamad A.A., Sheikholeslami M. Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int. J. Therm. Sci. 2013, 64:240-250.
    • (2013) Int. J. Therm. Sci. , vol.64 , pp. 240-250
    • Ashorynejad, H.R.1    Mohamad, A.A.2    Sheikholeslami, M.3
  • 19
    • 49749211339 scopus 로고
    • Magnetohydrodynamic version of movement of blood
    • Korchevskii E.M., Marcochnik L.S. Magnetohydrodynamic version of movement of blood. Biophysics 1965, 10:411-413.
    • (1965) Biophysics , vol.10 , pp. 411-413
    • Korchevskii, E.M.1    Marcochnik, L.S.2
  • 20
    • 0015890719 scopus 로고
    • Frequency and shear rate dependence of viscoelasticity of human blood
    • Thurston G.B. Frequency and shear rate dependence of viscoelasticity of human blood. Biorheology 1973, 10:375-381.
    • (1973) Biorheology , vol.10 , pp. 375-381
    • Thurston, G.B.1
  • 21
    • 0025768839 scopus 로고
    • Effect of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady Flows
    • Cho Y., Kensey K. Effect of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady Flows. Biorheology 1991, 28:241-263.
    • (1991) Biorheology , vol.28 , pp. 241-263
    • Cho, Y.1    Kensey, K.2
  • 22
    • 0013873058 scopus 로고
    • Effects of hematocrit and plasma proteins on human blood rheology at low shear rates
    • Chien S., Usami S., Taylor M., Lundberg J., Gregerson M. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 1966, 21:81-87.
    • (1966) J. Appl. Physiol. , vol.21 , pp. 81-87
    • Chien, S.1    Usami, S.2    Taylor, M.3    Lundberg, J.4    Gregerson, M.5
  • 23
    • 0003963910 scopus 로고
    • Role of non-Newtonian behaviour of blood in hemodynamics
    • Haynes R., Burton A. Role of non-Newtonian behaviour of blood in hemodynamics. Am. J. Physiol. 1959, 197:943-950.
    • (1959) Am. J. Physiol. , vol.197 , pp. 943-950
    • Haynes, R.1    Burton, A.2
  • 25
    • 0019193783 scopus 로고
    • A comparison of rheological constitutive functions for whole human blood
    • Easthope P., Brooks D. A comparison of rheological constitutive functions for whole human blood. Biorheology 1980, 17:235-247.
    • (1980) Biorheology , vol.17 , pp. 235-247
    • Easthope, P.1    Brooks, D.2
  • 26
    • 0017118576 scopus 로고
    • A constitutive equation for whole human blood
    • Walburn F., Schneck D. A constitutive equation for whole human blood. Biorheology 1976, 13:201-210.
    • (1976) Biorheology , vol.13 , pp. 201-210
    • Walburn, F.1    Schneck, D.2
  • 27
    • 1842471932 scopus 로고    scopus 로고
    • Non-Newtonian blood flow in human right coronary arteries: steady state simulations
    • Johnston B.M., Johnston P.R., Corney S., Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 2004, 37:709-720.
    • (2004) J. Biomech. , vol.37 , pp. 709-720
    • Johnston, B.M.1    Johnston, P.R.2    Corney, S.3    Kilpatrick, D.4
  • 28
    • 34250296673 scopus 로고
    • Rheology of concentrated disperse systems and minimum energy dissipation principle, I. Viscosity-concentration relationship
    • Quemada D. Rheology of concentrated disperse systems and minimum energy dissipation principle, I. Viscosity-concentration relationship. Rheol. Acta 1977, 16:82-94.
    • (1977) Rheol. Acta , vol.16 , pp. 82-94
    • Quemada, D.1
  • 29
    • 0027358591 scopus 로고
    • A non-linear Maxwell model of biofluids: application to normal blood
    • Quemada D. A non-linear Maxwell model of biofluids: application to normal blood. Biorheology 1993, 30:253-265.
    • (1993) Biorheology , vol.30 , pp. 253-265
    • Quemada, D.1
  • 30
    • 0028249023 scopus 로고
    • Importance of non-Newtonian rheological properties of blood in erethrocyte transport
    • Wang X., Stoltz J. Importance of non-Newtonian rheological properties of blood in erethrocyte transport. J. Mal. Vasc. 1994, 19:137-141.
    • (1994) J. Mal. Vasc. , vol.19 , pp. 137-141
    • Wang, X.1    Stoltz, J.2
  • 32
    • 0031874272 scopus 로고    scopus 로고
    • Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood flow in small tubes
    • Das B., Johnson P.C., Popel A.S. Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood flow in small tubes. Biorheology 1998, 35:69-87.
    • (1998) Biorheology , vol.35 , pp. 69-87
    • Das, B.1    Johnson, P.C.2    Popel, A.S.3
  • 33
    • 0032832428 scopus 로고    scopus 로고
    • Effect of multiple stenoses and post stenotic dilation on non-Newtonian blood flow in small arteries
    • Pincombe B., Mazumdar J., Craig I.H. Effect of multiple stenoses and post stenotic dilation on non-Newtonian blood flow in small arteries. Med. Biol. Eng. Compu. 1999, 37:595-599.
    • (1999) Med. Biol. Eng. Compu. , vol.37 , pp. 595-599
    • Pincombe, B.1    Mazumdar, J.2    Craig, I.H.3
  • 34
    • 0034189969 scopus 로고    scopus 로고
    • Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme
    • Siauw W.L., Ng E.Y.K., Mazumdar J. Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme. Med. Eng. Phys. 2000, 22:265-277.
    • (2000) Med. Eng. Phys. , vol.22 , pp. 265-277
    • Siauw, W.L.1    Ng, E.Y.K.2    Mazumdar, J.3
  • 35
    • 4644275039 scopus 로고    scopus 로고
    • An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis
    • Mandal P.K. An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis. Int. J. Non-Linear Mech. 2005, 40:151-164.
    • (2005) Int. J. Non-Linear Mech. , vol.40 , pp. 151-164
    • Mandal, P.K.1
  • 36
    • 34547800095 scopus 로고    scopus 로고
    • Numerical study on the unsteady flow of non-Newtonian fluid through differently shaped arterial stenoses
    • Mandal P.K., Chakravarty S., Mandal A. Numerical study on the unsteady flow of non-Newtonian fluid through differently shaped arterial stenoses. Int. J. Comput. Math. 2007, 84:1059-1077.
    • (2007) Int. J. Comput. Math. , vol.84 , pp. 1059-1077
    • Mandal, P.K.1    Chakravarty, S.2    Mandal, A.3
  • 37
    • 52949150424 scopus 로고    scopus 로고
    • Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses
    • Sarifuddin, Chakravarty S., Mandal P.K., Layek G.C. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses. J. Med. Eng. Technol. 2008, 32:385-399.
    • (2008) J. Med. Eng. Technol. , vol.32 , pp. 385-399
    • Sarifuddin, C.S.1    Mandal, P.K.2    Layek, G.C.3
  • 38
    • 34248337130 scopus 로고    scopus 로고
    • Effect of body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed artery
    • Mandal P.K., Chakravarty S., Mandal A., Amin N. Effect of body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed artery. Appl. Math. Comput. 2007, 189:766-779.
    • (2007) Appl. Math. Comput. , vol.189 , pp. 766-779
    • Mandal, P.K.1    Chakravarty, S.2    Mandal, A.3    Amin, N.4
  • 39
    • 37349016168 scopus 로고    scopus 로고
    • A power-law model of blood flow through a tapered overlapping stenosed artery
    • Ismail Z., Abdullah I., Mustapha N., Amin N. A power-law model of blood flow through a tapered overlapping stenosed artery. Appl. Math. Comput. 2008, 195(2):669-680.
    • (2008) Appl. Math. Comput. , vol.195 , Issue.2 , pp. 669-680
    • Ismail, Z.1    Abdullah, I.2    Mustapha, N.3    Amin, N.4
  • 41
  • 42
    • 84878311595 scopus 로고    scopus 로고
    • Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion
    • Misra J.C., Sinha A. Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion. Heat Mass Transfer 2013, 49:617-628.
    • (2013) Heat Mass Transfer , vol.49 , pp. 617-628
    • Misra, J.C.1    Sinha, A.2
  • 43
    • 84855302812 scopus 로고    scopus 로고
    • A study of effects of heat source on MHD blood flow through bifurcated arteries
    • Prakash O., Singh S.P., Kumar D., Dwivedi Y.K. A study of effects of heat source on MHD blood flow through bifurcated arteries. AIP Adv. 2011, 1:42128-42137.
    • (2011) AIP Adv. , vol.1 , pp. 42128-42137
    • Prakash, O.1    Singh, S.P.2    Kumar, D.3    Dwivedi, Y.K.4
  • 44
    • 84861196622 scopus 로고    scopus 로고
    • Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps
    • Rivero M., Cuevas S. Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps. Sensors Actuators B Chem. 2012, 166-167:884-892.
    • (2012) Sensors Actuators B Chem. , pp. 884-892
    • Rivero, M.1    Cuevas, S.2
  • 45
    • 49049143188 scopus 로고
    • High-Reynolds number solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
    • Ghia U., Ghia K.N., Shin C.T. High-Reynolds number solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 1982, 48:387-411.
    • (1982) J. Comput. Phys. , vol.48 , pp. 387-411
    • Ghia, U.1    Ghia, K.N.2    Shin, C.T.3
  • 46
    • 0032078546 scopus 로고    scopus 로고
    • Benchmark spectral results on the lid-driven cavity flow
    • Botella O., Peyret R. Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 1998, 27(4):421-433.
    • (1998) Comput. Fluids , vol.27 , Issue.4 , pp. 421-433
    • Botella, O.1    Peyret, R.2
  • 47
    • 0000305272 scopus 로고
    • An efficient scheme for solving steady incompressible Navier-Stokes equations
    • Bruneau C., Jouron C. An efficient scheme for solving steady incompressible Navier-Stokes equations. J. Comput. Phys. 1990, 89:389-413.
    • (1990) J. Comput. Phys. , vol.89 , pp. 389-413
    • Bruneau, C.1    Jouron, C.2
  • 48
    • 0028534391 scopus 로고
    • Incompressible-flow calculations with a consistent physical interpolation finite-volume approach
    • Deng G.B., Piquet J., Queutey P., Visonneau M. Incompressible-flow calculations with a consistent physical interpolation finite-volume approach. Comput. Fluids 1994, 23(8):1029-1047.
    • (1994) Comput. Fluids , vol.23 , Issue.8 , pp. 1029-1047
    • Deng, G.B.1    Piquet, J.2    Queutey, P.3    Visonneau, M.4
  • 49
    • 0037986168 scopus 로고    scopus 로고
    • A novel fully implicit finite volume method applied to the lid-driven cavity problem-part I: high Reynolds number flow calculations
    • Sahin M., Owens G.R. A novel fully implicit finite volume method applied to the lid-driven cavity problem-part I: high Reynolds number flow calculations. Int. J. Numer. Methods Fluids 2003, 42:57-77.
    • (2003) Int. J. Numer. Methods Fluids , vol.42 , pp. 57-77
    • Sahin, M.1    Owens, G.R.2
  • 50
    • 0004574861 scopus 로고
    • Simulation of cavity flow by the lattice Boltzmann method
    • Hou S., Zou Q., Chen S., Doolen G., Cogley A.C. Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 1995, 118:329-347.
    • (1995) J. Comput. Phys. , vol.118 , pp. 329-347
    • Hou, S.1    Zou, Q.2    Chen, S.3    Doolen, G.4    Cogley, A.C.5
  • 51
    • 0028173670 scopus 로고
    • P-version least squares finite element formulation for two dimensional incompressible non-Newtonian isothermal and isothermal flow
    • Bell B.C., Surana K.S. P-version least squares finite element formulation for two dimensional incompressible non-Newtonian isothermal and isothermal flow. Int. J. Numer. Methods Fluids 1994, 18:127-162.
    • (1994) Int. J. Numer. Methods Fluids , vol.18 , pp. 127-162
    • Bell, B.C.1    Surana, K.S.2
  • 52
    • 21344472107 scopus 로고    scopus 로고
    • A 3rd order upwind finite volume method for generalized Newtonian fluid flows
    • Neofytou P. A 3rd order upwind finite volume method for generalized Newtonian fluid flows. Adv. Eng. Softw. 2005, 36:664-680.
    • (2005) Adv. Eng. Softw. , vol.36 , pp. 664-680
    • Neofytou, P.1
  • 53
    • 52049119764 scopus 로고    scopus 로고
    • Galerkin least-squares multifield approximations for flows of inelastic non-Newtonian fluids
    • Zinani F., Frey S. Galerkin least-squares multifield approximations for flows of inelastic non-Newtonian fluids. J. Fluids Eng. 2008, 130:81507-81514.
    • (2008) J. Fluids Eng. , vol.130 , pp. 81507-81514
    • Zinani, F.1    Frey, S.2
  • 54
    • 84859635553 scopus 로고    scopus 로고
    • Flow of power-law fluids in a cavity driven by the motion of two facing lids-a simulation by lattice Boltzmann method
    • Mendu S.S., Das P.K. Flow of power-law fluids in a cavity driven by the motion of two facing lids-a simulation by lattice Boltzmann method. J. Non-Newtonian Fluid Mech. 2012, 175-176:10-24.
    • (2012) J. Non-Newtonian Fluid Mech. , pp. 10-24
    • Mendu, S.S.1    Das, P.K.2
  • 55
    • 79851513634 scopus 로고    scopus 로고
    • Multiple-relaxation-time Lattice Boltzmann model for generalized Newtonian fluid flows
    • Chai Z., Shi B., Guo Z., Rong F. Multiple-relaxation-time Lattice Boltzmann model for generalized Newtonian fluid flows. J. Non-Newtonian Fluid Mech. 2011, 166:332-342.
    • (2011) J. Non-Newtonian Fluid Mech. , vol.166 , pp. 332-342
    • Chai, Z.1    Shi, B.2    Guo, Z.3    Rong, F.4
  • 56
    • 84872203466 scopus 로고    scopus 로고
    • A Lattice Boltzmann and immersed boundary scheme for model blood flow in constricted pipes: part 1-steady flow
    • Fu S.C., Leung W.W.F., So R.M.C. A Lattice Boltzmann and immersed boundary scheme for model blood flow in constricted pipes: part 1-steady flow. Commun. Comput. Phys. 2013, 14(1):126-152.
    • (2013) Commun. Comput. Phys. , vol.14 , Issue.1 , pp. 126-152
    • Fu, S.C.1    Leung, W.W.F.2    So, R.M.C.3
  • 57
    • 79951991291 scopus 로고    scopus 로고
    • A Lattice Boltzmann based numerical scheme for microchannel flows
    • Fu S.C., Leung W.W.F., So R.M.C. A Lattice Boltzmann based numerical scheme for microchannel flows. J. Fluids Eng. 2009, 131:81401-81412.
    • (2009) J. Fluids Eng. , vol.131 , pp. 81401-81412
    • Fu, S.C.1    Leung, W.W.F.2    So, R.M.C.3
  • 58
    • 73549105454 scopus 로고    scopus 로고
    • Modeled Boltzmann equation and the constant density assumption
    • Fu S.C., So R.M.C. Modeled Boltzmann equation and the constant density assumption. AIAA J. 2009, 47(12):3038-3042.
    • (2009) AIAA J. , vol.47 , Issue.12 , pp. 3038-3042
    • Fu, S.C.1    So, R.M.C.2
  • 59
    • 77953615960 scopus 로고    scopus 로고
    • Stochastic finite difference Lattice Boltzmann method for steady incompressible flows
    • Fu S.C., So R.M.C., Leung W.W.F. Stochastic finite difference Lattice Boltzmann method for steady incompressible flows. J. Comput. Phys. 2010, 229(17):6084-6103.
    • (2010) J. Comput. Phys. , vol.229 , Issue.17 , pp. 6084-6103
    • Fu, S.C.1    So, R.M.C.2    Leung, W.W.F.3
  • 60
    • 79952000893 scopus 로고    scopus 로고
    • A discrete flux scheme for aerodynamic and hydrodynamic flows
    • Fu S.C., So R.M.C., Leung W.W.F. A discrete flux scheme for aerodynamic and hydrodynamic flows. Commun. Comput. Phys. 2011, 9(5):1257-1283.
    • (2011) Commun. Comput. Phys. , vol.9 , Issue.5 , pp. 1257-1283
    • Fu, S.C.1    So, R.M.C.2    Leung, W.W.F.3
  • 61
    • 79951974886 scopus 로고    scopus 로고
    • PhD thesis, Mechanical Engineering Department, The Hong Kong Polytechnic University, Hong Kong
    • Fu S.F. Numerical Simulation of Blood Flow in Stenotic Arteries 2011, PhD thesis, Mechanical Engineering Department, The Hong Kong Polytechnic University, Hong Kong.
    • (2011) Numerical Simulation of Blood Flow in Stenotic Arteries
    • Fu, S.F.1
  • 62
    • 84866553522 scopus 로고    scopus 로고
    • Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow
    • Fu S.C., So R.M.C., Leung W.W.F. Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow. Comput. Fluids 2012, 69:67-80.
    • (2012) Comput. Fluids , vol.69 , pp. 67-80
    • Fu, S.C.1    So, R.M.C.2    Leung, W.W.F.3
  • 63
    • 84872191975 scopus 로고    scopus 로고
    • A Lattice Boltzmann and Immersed Boundary scheme for model blood flow in constricted pipes: part 2-pulsatile flow
    • Fu S.C., So R.M.C., Leung W.W.F. A Lattice Boltzmann and Immersed Boundary scheme for model blood flow in constricted pipes: part 2-pulsatile flow. Commun. Comput. Phys. 2013, 14:153-173.
    • (2013) Commun. Comput. Phys. , vol.14 , pp. 153-173
    • Fu, S.C.1    So, R.M.C.2    Leung, W.W.F.3
  • 64
    • 0037455606 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media
    • Boek E.S., Chin J., Coveney P.V. Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media. Int. J. Mod. Phys. B 2003, 17:99-102.
    • (2003) Int. J. Mod. Phys. B , vol.17 , pp. 99-102
    • Boek, E.S.1    Chin, J.2    Coveney, P.V.3
  • 66
    • 28844467175 scopus 로고    scopus 로고
    • Lattice Boltzmann method for non-Newtonian (power-law) fluids
    • Gabbanelli S., Drazer G., Koplik J. Lattice Boltzmann method for non-Newtonian (power-law) fluids. Phys. Rev. E. 2005, 56:046312.
    • (2005) Phys. Rev. E. , vol.56 , pp. 046312
    • Gabbanelli, S.1    Drazer, G.2    Koplik, J.3
  • 67
    • 32944459291 scopus 로고    scopus 로고
    • Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques
    • Sullivan S.P., Gladden L.F., Johns M.L. Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques. J. Non-Newtonian Fluid Mech. 2006, 133:91-98.
    • (2006) J. Non-Newtonian Fluid Mech. , vol.133 , pp. 91-98
    • Sullivan, S.P.1    Gladden, L.F.2    Johns, M.L.3
  • 68
    • 33947281019 scopus 로고    scopus 로고
    • A second-order accurate Lattice Boltzmann non-Newtonian flow model
    • Boyd J., Buick J., Green S. A second-order accurate Lattice Boltzmann non-Newtonian flow model. J. Phys. A Math. Gen. 2006, 39:14241-14247.
    • (2006) J. Phys. A Math. Gen. , vol.39 , pp. 14241-14247
    • Boyd, J.1    Buick, J.2    Green, S.3
  • 71
    • 58149142975 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of power-law fluid flow in the mixing section of a single-screw extruder
    • Buick J.M. Lattice Boltzmann simulation of power-law fluid flow in the mixing section of a single-screw extruder. Chem. Eng. Sci. 2009, 64:52-58.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 52-58
    • Buick, J.M.1
  • 72
    • 27844485157 scopus 로고    scopus 로고
    • Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes
    • Ouared R., Chopard B. Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes. J. Stat. Phys. 2005, 121:209-221.
    • (2005) J. Stat. Phys. , vol.121 , pp. 209-221
    • Ouared, R.1    Chopard, B.2
  • 73
    • 32644449824 scopus 로고    scopus 로고
    • Mesoscopic simulations of systolic flow in the human abdominal aorta
    • Artoli A.M., Hoekstra A.G., Sloot P.M.A. Mesoscopic simulations of systolic flow in the human abdominal aorta. J. Biomech. 2006, 39:873-884.
    • (2006) J. Biomech. , vol.39 , pp. 873-884
    • Artoli, A.M.1    Hoekstra, A.G.2    Sloot, P.M.A.3
  • 74
    • 36048982262 scopus 로고    scopus 로고
    • Comparison of Newtonian and non-Newtonian flows in a two dimensional carotid artery model using the lattice Boltzmann method
    • Boyd J., Buick J.M. Comparison of Newtonian and non-Newtonian flows in a two dimensional carotid artery model using the lattice Boltzmann method. Phys. Med. Biol. 2007, 52:6215-6228.
    • (2007) Phys. Med. Biol. , vol.52 , pp. 6215-6228
    • Boyd, J.1    Buick, J.M.2
  • 75
    • 67650554000 scopus 로고    scopus 로고
    • Non-Newtonian blood flow simulation in cerebral aneurysms
    • Bernsdorf J., Wang D. Non-Newtonian blood flow simulation in cerebral aneurysms. Comput. Math. Appl. 2009, 58:1024-1029.
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1024-1029
    • Bernsdorf, J.1    Wang, D.2
  • 77
    • 67650566167 scopus 로고    scopus 로고
    • A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations
    • Ashrafizaadeh M., Bakhshaei H. A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations. Comput. Math. Appl. 2009, 58:1045-1054.
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1045-1054
    • Ashrafizaadeh, M.1    Bakhshaei, H.2
  • 78
    • 79957475684 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of non Newtonian flows past confined cylinders
    • Nejat A., Abdollahi V., Vahidkhah K. Lattice Boltzmann simulation of non Newtonian flows past confined cylinders. J. Non-Newtonian Fluid Mech. 2011, 166:689-697.
    • (2011) J. Non-Newtonian Fluid Mech. , vol.166 , pp. 689-697
    • Nejat, A.1    Abdollahi, V.2    Vahidkhah, K.3
  • 79
    • 84875851149 scopus 로고    scopus 로고
    • Natural convection of power-law fluid between two-square eccentric duct annuli
    • Matin M.H., Pop I., Khanchezar S. Natural convection of power-law fluid between two-square eccentric duct annuli. J. Non-Newtonian Fluid Mech. 2013, 197:11-23.
    • (2013) J. Non-Newtonian Fluid Mech. , vol.197 , pp. 11-23
    • Matin, M.H.1    Pop, I.2    Khanchezar, S.3
  • 80
    • 84875811943 scopus 로고    scopus 로고
    • Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders
    • Matin M.H., Khan W.A. Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders. Int. Commun. Heat Mass Transfer 2013, 43:112-121.
    • (2013) Int. Commun. Heat Mass Transfer , vol.43 , pp. 112-121
    • Matin, M.H.1    Khan, W.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.