-
1
-
-
84889593981
-
Mining large streams of user data for personalized recommendations
-
X. Amatriain. Mining large streams of user data for personalized recommendations. ACM SIGKDD Explorations Newsletter, 14(2):37{48, 2013.
-
(2013)
ACM SIGKDD Explorations Newsletter
, vol.14
, Issue.2
, pp. 37-48
-
-
Amatriain, X.1
-
2
-
-
84890656495
-
System architectures for personalization and recommendation
-
March
-
X. Amatriain and J. Basilico. System architectures for personalization and recommendation. In the Netix Techblog: http://techblog.netix.com/2013/03/ system-architectures-for.html, March 2013.
-
(2013)
The Netix Techblog
-
-
Amatriain, X.1
Basilico, J.2
-
3
-
-
70349798309
-
I like it... I like it not: Evaluating user ratings noise in recommender systems
-
chapter 24, Springer Berlin
-
X. Amatriain, J. M. Pujol, and N. Oliver. I Like It... I Like It Not: Evaluating User Ratings Noise in Recommender Systems. In User Modeling, Adaptation, and Personalization, volume 5535, chapter 24, pages 247{258. Springer Berlin, 2009.
-
(2009)
User Modeling, Adaptation, and Personalization
, vol.5535
, pp. 247-258
-
-
Amatriain, X.1
Pujol, J.M.2
Oliver, N.3
-
4
-
-
57349146373
-
Lessons from the netix prize challenge
-
December
-
R. M. Bell and Y. Koren. Lessons from the Netix Prize Challenge. SIGKDD Explor. Newsl., 9(2):75{79, December 2007.
-
(2007)
SIGKDD Explor. Newsl.
, vol.9
, Issue.2
, pp. 75-79
-
-
Bell, R.M.1
Koren, Y.2
-
5
-
-
77953642308
-
Efficient algorithms for ranking with svms
-
June
-
O. Chapelle and S. S. Keerthi. Efficient algorithms for ranking with SVMs. Information Retrieval, 13:201{215, June 2010.
-
(2010)
Information Retrieval
, vol.13
, pp. 201-215
-
-
Chapelle, O.1
Keerthi, S.S.2
-
6
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
December
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933{969, December 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
8
-
-
3042697346
-
Evaluating collaborative filtering recommender systems
-
J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5{53, 2004.
-
(2004)
ACM Trans. Inf. Syst.
, vol.22
, Issue.1
, pp. 5-53
-
-
Herlocker, J.L.1
Konstan, J.A.2
Terveen, L.G.3
Riedl, J.T.4
-
9
-
-
84455207062
-
A stochastic learning-to-rank algorithm and its application to contextual advertising
-
M. Karimzadehgan, W. Li, R. Zhang, and J. Mao. A stochastic learning-to-rank algorithm and its application to contextual advertising. In Proceedings of the 20th WWW, 2011.
-
(2011)
Proceedings of the 20th WWW
-
-
Karimzadehgan, M.1
Li, W.2
Zhang, R.3
Mao, J.4
-
10
-
-
65449121157
-
Factorization meets the neighborhood: A multifaceted collaborative filtering model
-
Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD, 2008.
-
(2008)
Proceedings of the 14th ACM SIGKDD
-
-
Koren, Y.1
-
12
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
August
-
Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender Systems. Computer, 42(8):30{37, August 2009.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
13
-
-
77956031557
-
Temporal diversity in recommender systems
-
New York, NY, USA, ACM
-
N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal diversity in recommender systems. In SIGIR '10: Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, pages 210{217, New York, NY, USA, 2010. ACM.
-
(2010)
SIGIR '10: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 210-217
-
-
Lathia, N.1
Hailes, S.2
Capra, L.3
Amatriain, X.4
-
14
-
-
84873533505
-
Dynamic playlist generation based on skipping behavior
-
E. Pampalk, T. Pohle, and G. Widmer. Dynamic playlist generation based on skipping behavior. In ISMIR, volume 5, pages 634{637, 2005.
-
(2005)
ISMIR
, vol.5
, pp. 634-637
-
-
Pampalk, E.1
Pohle, T.2
Widmer, G.3
-
15
-
-
84866033717
-
Online learning to diversify from implicit feedback
-
New York, NY, USA, ACM
-
K. Raman, P. Shivaswamy, and T. Joachims. Online learning to diversify from implicit feedback. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pages 705{713, New York, NY, USA, 2012. ACM.
-
(2012)
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '12
, pp. 705-713
-
-
Raman, K.1
Shivaswamy, P.2
Joachims, T.3
-
17
-
-
84883062301
-
Climf: Learning to maximize reciprocal rank with collaborative less-is-morefiltering
-
Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic. CLiMF: learning to maximize reciprocal rank with collaborative less-is-morefiltering. In Proc. of the sixth Recsys, 2012.
-
(2012)
Proc. of the Sixth Recsys
-
-
Shi, Y.1
Karatzoglou, A.2
Baltrunas, L.3
Larson, M.4
Oliver, N.5
Hanjalic, A.6
-
18
-
-
79960495877
-
Designing and evaluating explanations for recommender systems
-
Springer
-
N. Tintarev and J. Masthoff. Designing and evaluating explanations for recommender systems. In Recommender Systems Handbook, pages 479{510. Springer, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 479-510
-
-
Tintarev, N.1
Masthoff, J.2
-
19
-
-
82555191365
-
Rank and relevance in novelty and diversity metrics for recommender systems
-
pages, New York, NY, USA, ACM
-
S. Vargas and P. Castells. Rank and relevance in novelty and diversity metrics for recommender systems. In Proceedings of the fifth ACM conference on Recommender systems, RecSys '11, pages 109{116, New York, NY, USA, 2011. ACM.
-
(2011)
Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys '11
, pp. 109-116
-
-
Vargas, S.1
Castells, P.2
|