메뉴 건너뛰기




Volumn 26, Issue 1, 2014, Pages 91-100

Classification of driver fatigue expressions by combined curvelet features and gabor features, and random subspace ensembles of support vector machines

Author keywords

Curvelet transform; Fatigue expressions; Gabor transform; Random subspace ensemble; Support vector machines

Indexed keywords

CLASSIFICATION ACCURACY; CURVELET TRANSFORMS; DRIVER FATIGUE MONITORING; FATIGUE EXPRESSIONS; GABOR TRANSFORM; GABOR WAVELET TRANSFORMS; RANDOM SUBSPACE ENSEMBLES; SUPPORT VECTOR MACHINE (SVMS);

EID: 84890610149     PISSN: 10641246     EISSN: 18758967     Source Type: Journal    
DOI: 10.3233/IFS-120717     Document Type: Article
Times cited : (9)

References (41)
  • 4
    • 29344475478 scopus 로고    scopus 로고
    • EEG-based drowsiness estimation for safety driving using independent component analysis
    • C.T. Lin, R.C.Wu and S.F. Liang, et al., EEG-based drowsiness estimation for safety driving using independent component analysis, IEEE Trans Circuits Syst I, Reg Papers 52(12) (2005), 2726-2738
    • (2005) IEEE Trans Circuits Syst I, Reg Papers , vol.52 , Issue.12 , pp. 2726-2738
    • Lin, C.T.1    Wu, R.C.2    Liang, S.F.3
  • 5
    • 42249091046 scopus 로고    scopus 로고
    • Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver's drowsiness detection and warning
    • C.T. Lin, Y.C. Chen and T.Y. Huang, et al., Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver's drowsiness detection and warning, IEEE Trans Biomed Eng 55(5) (2008), 1582-1591
    • (2008) IEEE Trans Biomed Eng , vol.55 , Issue.5 , pp. 1582-1591
    • Lin, C.T.1    Chen, Y.C.2    Huang, T.Y.3
  • 6
    • 50649103259 scopus 로고    scopus 로고
    • Fuzzy fusion of eyelid activity indicators for hypovigilance-related accident prediction
    • I.G. Damousis and D. Tzovaras, Fuzzy fusion of eyelid activity indicators for hypovigilance-related accident prediction. IEEE Trans Intell Transp Syst 9(3) (2008), 491-500
    • (2008) IEEE Trans Intell Transp Syst , vol.9 , Issue.3 , pp. 491-500
    • Damousis, I.G.1    Tzovaras, D.2
  • 7
    • 56349131350 scopus 로고    scopus 로고
    • Using EEG spectral components to assess algorithms for detecting fatigue
    • B.T. Jap, S. Lal and P. Fischer, et al., Using EEG spectral components to assess algorithms for detecting fatigue, Expert Syst Appl 36(2) (2009), 2352-2359
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 2352-2359
    • Jap, B.T.1    Lal, S.2    Fischer, P.3
  • 8
    • 56949095526 scopus 로고    scopus 로고
    • Can SVM be used for automatic EEG detection of drowsiness during car driving?
    • M.V.M. Yeo, X.P. Li and K. Shen, Can SVM be used for automatic EEG detection of drowsiness during car driving? Safety Sci 47(1) (2009), 115-124
    • (2009) Safety Sci , vol.47 , Issue.1 , pp. 115-124
    • Yeo, M.V.M.1    Li, X.P.2    Shen, K.3
  • 9
    • 60249097032 scopus 로고    scopus 로고
    • Driver drowsiness detection with eyelidrelated parameters by support vector machine
    • S. Hu and G. Zheng, Driver drowsiness detection with eyelidrelated parameters by support vector machine, Expert Syst Appl 36(4) (2009), 7651-7658
    • (2009) Expert Syst Appl , vol.36 , Issue.4 , pp. 7651-7658
    • Hu, S.1    Zheng, G.2
  • 10
    • 77956650358 scopus 로고    scopus 로고
    • EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters
    • J. Liu, C. Zhang and C. Zheng, EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters, Biomed Signal Process Control 5(2) (2010), 124-130
    • (2010) Biomed Signal Process Control , vol.5 , Issue.2 , pp. 124-130
    • Liu, J.1    Zhang, C.2    Zheng, C.3
  • 11
    • 77549086087 scopus 로고    scopus 로고
    • A driver fatigue recognition model based on information fusion and dynamic bayesian network
    • G. Yang, Y. Lin and P. Bhattacharya, A driver fatigue recognition model based on information fusion and dynamic Bayesian network, Inf Sci 180(10) (2010), 1942-1954
    • (2010) Inf Sci , vol.180 , Issue.10 , pp. 1942-1954
    • Yang, G.1    Lin, Y.2    Bhattacharya, P.3
  • 13
    • 79551532116 scopus 로고    scopus 로고
    • Driver drowsiness classification using fuzzy wavelet-packet-based feature extraction algorithm
    • R.N. Khushaba, S.Kodagoda and L. Sara, et al., Driver drowsiness classification using fuzzy wavelet-packet-based feature extraction algorithm, IEEE Transactions on biomedical engineering 58(1) (2011), 121-131
    • (2011) IEEE Transactions on Biomedical Engineering , vol.58 , Issue.1 , pp. 121-131
    • Khushaba, R.N.1    Kodagoda, S.2    Sara, L.3
  • 14
    • 33644973144 scopus 로고    scopus 로고
    • Real-time system for monitoring driver vigilance
    • L. Bergasa, J. Nuevo and M. Sotelo, et al., Real-time system for monitoring driver vigilance. IEEE Trans Intell Transp Syst 7(1) (2006), 63-77
    • (2006) IEEE Trans Intell Transp Syst , vol.7 , Issue.1 , pp. 63-77
    • Bergasa, L.1    Nuevo, J.2    Sotelo, M.3
  • 15
    • 34548142264 scopus 로고    scopus 로고
    • Measurement of driver's consciousness by image processing - A method for presuming driver's drowsiness by eye-blinks coping with individual differences, Proc
    • M. Suzuki, N. Yamamoto and O. Yamamoto, et al., Measurement of driver's consciousness by image processing - A method for presuming driver's drowsiness by eye-blinks coping with individual differences, Proc IEEE Int Conf Syst Man Cybern 4 (2006), 2891-2896
    • (2006) IEEE Int Conf Syst Man Cybern , vol.4 , pp. 2891-2896
    • Suzuki, M.1    Yamamoto, N.2    Yamamoto, O.3
  • 16
    • 34147139802 scopus 로고    scopus 로고
    • A visual approach for driver inattention detection
    • T.D. Orazio, M. Leo and C. Guaragnella, A visual approach for driver inattention detection, Pattern Recognit 40(8) (2007), 2341-2355
    • (2007) Pattern Recognit , vol.40 , Issue.8 , pp. 2341-2355
    • Orazio, T.D.1    Leo, M.2    Guaragnella, C.3
  • 17
    • 77956603607 scopus 로고    scopus 로고
    • Camera-based drowsiness reference for driver state classification under real driving conditions
    • F. Friedrichs and B.Yang, Camera-based drowsiness reference for driver state classification under real driving conditions, Proc IEEE Intell Veh Symp, 2010, pp. 101-106
    • (2010) Proc IEEE Intell Veh Symp , pp. 101-106
    • Friedrichs, F.1    Yang, B.2
  • 19
    • 79958152899 scopus 로고    scopus 로고
    • U.S. Dept. Transp., Fed. Motor Carrier Safety Admin., Washington, DC, Tech. Rep., Rep
    • A. Eskandarian, R. Sayed and P. Delaigue, et al., Advanced driver fatigue research. U.S. Dept. Transp., Fed. Motor Carrier Safety Admin., Washington, DC, Tech. Rep., Rep., 2007
    • (2007) Advanced Driver Fatigue Research
    • Eskandarian, A.1    Sayed, R.2    Delaigue, P.3
  • 20
    • 72449129004 scopus 로고    scopus 로고
    • Gabor-based dynamic representation for human fatigue monitoring in facial image sequences
    • X. Fan, Y. Sun and B. Yin, Gabor-based dynamic representation for human fatigue monitoring in facial image sequences, Pattern Recognit Lett 31(3) (2010), 234-243
    • (2010) Pattern Recognit Lett , vol.31 , Issue.3 , pp. 234-243
    • Fan, X.1    Sun, Y.2    Yin, B.3
  • 22
    • 77949349313 scopus 로고    scopus 로고
    • Lighting normalization algorithms for face verification
    • IDIAP
    • G. Heusch, F. Cardinaux and S. Marcel, Lighting normalization algorithms for face verification. Tech. Rep, IDIAP, 2005
    • (2005) Tech. Rep
    • Heusch, G.1    Cardinaux, F.2    Marcel, S.3
  • 26
    • 63749093755 scopus 로고    scopus 로고
    • Edge detection in microscopy images using curvelets
    • T. Geback and P.Koumoutsakos, Edge detection in microscopy images using curvelets, BMC Bioinformatics 10(1) (2009), 1-14
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 1-14
    • Geback, T.1    Koumoutsakos, P.2
  • 28
    • 0000293183 scopus 로고
    • Theory of communication
    • D. Gabor, Theory of communication, J IEEE 93 (1946), 429-457
    • (1946) J IEEE , vol.93 , pp. 429-457
    • Gabor, D.1
  • 31
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24 (1996), 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 32
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R.E. Schapire, A Decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences 55 (1997), 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 33
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, Support vector networks, Machine Learning 20(3) (1995), 273-297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 35
  • 37
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • M. Skurichina, P. Robert andW. Duin, Bagging, boosting and the Random Subspace Method for Linear Classifiers, Pattern Analysis & Applications 5 (2002), 121-135
    • (2002) Pattern Analysis & Applications , vol.5 , pp. 121-135
    • Skurichina, M.1    Robert, P.2    Duin, W.3
  • 38
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forest
    • T.K. Ho, The random subspace method for constructing decision forest, IEEE Trans PAMI 20 (1998), 832-844
    • (1998) IEEE Trans PAMI , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 41
    • 84866860621 scopus 로고    scopus 로고
    • Classification of cerebral palsy gait by kernel fisher discriminant analysis
    • B.L. Zhang and Y.C. Zhang, Classification of cerebral palsy gait by kernel fisher discriminant analysis, International journal of hybrid intelligent systems 5(4) (2008), 209-218
    • (2008) International Journal of Hybrid Intelligent Systems , vol.5 , Issue.4 , pp. 209-218
    • Zhang, B.L.1    Zhang, Y.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.