-
1
-
-
78650899619
-
Occupancy-driven energy management for smart building automation
-
New York, New York, USA, ACM Press
-
Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng. Occupancy-driven energy management for smart building automation. In Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building - BuildSys '10, page 1, New York, New York, USA, 2010. ACM Press.
-
(2010)
Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building - BuildSys '10
, pp. 1
-
-
Agarwal, Y.1
Balaji, B.2
Gupta, R.3
Lyles, J.4
Wei, M.5
Weng, T.6
-
3
-
-
84868202670
-
A note on bayesian forecast combination procedures
-
A. H. Westlund and P. Hackl, editors, Springer-Verlag
-
F. Diebold. A Note on Bayesian Forecast Combination Procedures. In A. H. Westlund and P. Hackl, editors, Economic Structural Change: Analysis and Forecasting, pages 225{232. Springer-Verlag, 1991.
-
(1991)
Economic Structural Change: Analysis and Forecasting
, pp. 225-232
-
-
Diebold, F.1
-
5
-
-
78650607221
-
Schedule-calibrated occupant behavior simulation
-
New York, New York, USA, ACM Press
-
R. Goldstein, A. Tessier, and A. Khan. Schedule-calibrated occupant behavior simulation. In Proceedings of the 2010 Spring Simulation Multiconference on - SpringSim '10, page 1, New York, New York, USA, 2010. ACM Press.
-
(2010)
Proceedings of the 2010 Spring Simulation Multiconference on - SpringSim '10
, pp. 1
-
-
Goldstein, R.1
Tessier, A.2
Khan, A.3
-
6
-
-
0037354136
-
Forecasting and recombining time-series compents by using neural networks
-
J. Hansen and R. Nelson. Forecasting and recombining time-series compents by using neural networks. Joural of the Operational Research Society, 54:307{317, 2003.
-
(2003)
Joural of the Operational Research Society
, vol.54
, pp. 307-317
-
-
Hansen, J.1
Nelson, R.2
-
8
-
-
79952362137
-
Hybrid evolutionary algorithms in a svr traffic ow forecasting model
-
Apr.
-
W.-C. Hong, Y. Dong, F. Zheng, and S. Y. Wei. Hybrid evolutionary algorithms in a SVR traffic ow forecasting model. Applied Mathematics and Computation, 217(15):6733{6747, Apr. 2011.
-
(2011)
Applied Mathematics and Computation
, vol.217
, Issue.15
, pp. 6733-6747
-
-
Hong, W.-C.1
Dong, Y.2
Zheng, F.3
Wei, S.Y.4
-
10
-
-
84890647471
-
A simulation-based study of model predictive control in a medium-sized commercial building
-
P. Li, M. Barić, S. Narayanan, and S. Yuan. A Simulation-Based Study of Model Predictive Control in a Medium-Sized Commercial Building. In International High Performance Buildings Conference, pages 1{10, 2012.
-
(2012)
International High Performance Buildings Conference
, pp. 1-10
-
-
Li, P.1
Barić, M.2
Narayanan, S.3
Yuan, S.4
-
11
-
-
0017846358
-
On a measure of a lack of fit in time series models
-
G. M. Ljung and G. E. P. Box. On a Measure of a Lack of Fit in Time Series Models. Biometrika, 65(2):297{303, 1978.
-
(1978)
Biometrika
, vol.65
, Issue.2
, pp. 297-303
-
-
Ljung, G.M.1
Box, G.E.P.2
-
12
-
-
77957768679
-
Model predictive control for the operation of building cooling systems
-
Y. Ma, F. Borrelli, and B. Hencey. Model predictive control for the operation of building cooling systems. In America Control Conference, 2010.
-
(2010)
America Control Conference
-
-
Ma, Y.1
Borrelli, F.2
Hencey, B.3
-
15
-
-
36448993033
-
A generalised stochastich model for the simulation of occupant presence
-
J. Page, D. Robinson, N. Morel, and J.-L. Scartezzini. A generalised stochastich model for the simulation of occupant presence. Energy and Buildings, 40:83{98, 2008.
-
(2008)
Energy and Buildings
, vol.40
, pp. 83-98
-
-
Page, J.1
Robinson, D.2
Morel, N.3
Scartezzini, J.-L.4
-
16
-
-
0035343067
-
A bayesian multiple models combination method for time series prediction
-
V. Petridis, A. Kehagias, L. Petrou, A. Bakirtzis, S. Kiartzis, H. Panagiotou, and N. Maslaris. A Bayesian multiple models combination method for time series prediction. Journal of intelligent and robotic systems, 31(1):69{89, 2001.
-
(2001)
Journal of Intelligent and Robotic Systems
, vol.31
, Issue.1
, pp. 69-89
-
-
Petridis, V.1
Kehagias, A.2
Petrou, L.3
Bakirtzis, A.4
Kiartzis, S.5
Panagiotou, H.6
Maslaris, N.7
-
17
-
-
0344944192
-
Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results
-
B. M. Williams and L. a. Hoel. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. Journal of Transportation Engineering, 129(6):664, 2003.
-
(2003)
Journal of Transportation Engineering
, vol.129
, Issue.6
, pp. 664
-
-
Williams, B.M.1
Hoel, L.A.2
-
19
-
-
10644266188
-
Travel-time prediction with support vector regression
-
Dec.
-
C.-H. Wu, J.-M. Ho, and D. Lee. Travel-Time Prediction With Support Vector Regression. IEEE Transactions on Intelligent Transportation Systems, 5(4):276{281, Dec. 2004.
-
(2004)
IEEE Transactions on Intelligent Transportation Systems
, vol.5
, Issue.4
, pp. 276-281
-
-
Wu, C.-H.1
Ho, J.-M.2
Lee, D.3
-
20
-
-
31044437283
-
Short-term freeway traffic flow prediction: Bayesian combined neural network approach
-
W. Zheng, D.-H. Lee, and Q. Shi. Short-Term Freeway Traffic Flow Prediction: Bayesian Combined Neural Network Approach. Journal of Transportation Engineering, 132(2):114, 2006.
-
(2006)
Journal of Transportation Engineering
, vol.132
, Issue.2
, pp. 114
-
-
Zheng, W.1
Lee, D.-H.2
Shi, Q.3
|