메뉴 건너뛰기




Volumn , Issue , 2009, Pages 170-175

Discriminative adaptive training with VTS and JUD

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE TRAINING; DISCRIMINATIVE TRAINING; EXPECTATION-MAXIMISATION; JOINT UNCERTAINTY; MINIMUM PHONE ERROR; MODEL-BASED COMPENSATION; NOISE ROBUST SPEECH RECOGNITION; NON-HOMOGENEOUS; OPTIMISATIONS; PREDICTIVE MODELS; SECOND ORDERS; SPEECH RECOGNITION SYSTEMS; TRAINING DATA; VECTOR TAYLOR SERIES;

EID: 77949378972     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ASRU.2009.5373266     Document Type: Conference Paper
Times cited : (19)

References (19)
  • 1
    • 85009113852 scopus 로고    scopus 로고
    • HMM adaptation using vector Taylor series for noisy speech recognition
    • A. Acero, L. Deng, T. T. Kristjansson, and J. Zhang, "HMM adaptation using vector Taylor series for noisy speech recognition," in Proc. ICSLP, 2000.
    • (2000) Proc. ICSLP
    • Acero, A.1    Deng, L.2    Kristjansson, T.T.3    Zhang, J.4
  • 2
    • 85009070292 scopus 로고    scopus 로고
    • Large vocabulary speech recognition under adverse acoustic environments
    • L. Deng, A. Acero, M. Plumpe, and X. D. Huang, "Large vocabulary speech recognition under adverse acoustic environments," in Proc. ICSLP, 2000.
    • (2000) Proc. ICSLP
    • Deng, L.1    Acero, A.2    Plumpe, M.3    Huang, X.D.4
  • 3
    • 44849125798 scopus 로고    scopus 로고
    • High-performance HMM adaptation with joint compensation of additive and convolutive distortions via vector taylor series
    • J. Li, L. Deng, D. Yu, Y. Gong, and A. Acero, "High-performance HMM adaptation with joint compensation of additive and convolutive distortions via vector taylor series," in Proc. ASRU, 2007.
    • (2007) Proc. ASRU
    • Li, J.1    Deng, L.2    Yu, D.3    Gong, Y.4    Acero, A.5
  • 4
    • 34547553730 scopus 로고    scopus 로고
    • Uncertainty decoding for noise robust speech recognition,
    • Ph.D. dissertation, Cambridge University
    • H. Liao, "Uncertainty decoding for noise robust speech recognition," Ph.D. dissertation, Cambridge University, 2007.
    • (2007)
    • Liao, H.1
  • 5
    • 34547528168 scopus 로고    scopus 로고
    • Adaptive Training with Joint Uncertainty Decoding for Robust Recognition of Noise Data
    • H. Liao and M. Gales, "Adaptive Training with Joint Uncertainty Decoding for Robust Recognition of Noise Data," in Proc. ICASSP, 2007.
    • (2007) Proc. ICASSP
    • Liao, H.1    Gales, M.2
  • 7
    • 44849122740 scopus 로고    scopus 로고
    • Irrelevant variability normalization based hmm training using vts approximation of an explicit model of environmental distortions
    • Q. Huo and Y. Hu, "Irrelevant variability normalization based hmm training using vts approximation of an explicit model of environmental distortions," in Proc. Interspeech, 2007.
    • (2007) Proc. Interspeech
    • Huo, Q.1    Hu, Y.2
  • 8
    • 70450163444 scopus 로고    scopus 로고
    • Adaptive training with noisy constrained maximum likelihood linear regression for noise robust speech recognition
    • D. Kim and M. Gales, "Adaptive training with noisy constrained maximum likelihood linear regression for noise robust speech recognition," in Proc. Interspeech, 2009.
    • (2009) Proc. Interspeech
    • Kim, D.1    Gales, M.2
  • 9
    • 4544345461 scopus 로고    scopus 로고
    • Discriminative adaptive training using the MPE criterion
    • L. Wang and P. C. Woodland, "Discriminative adaptive training using the MPE criterion," in Proc. ASRU, 2003.
    • (2003) Proc. ASRU
    • Wang, L.1    Woodland, P.C.2
  • 10
  • 11
    • 0034849080 scopus 로고    scopus 로고
    • Improved discriminative training techniques for large vocabulary continuous speech recognition
    • D. Povey and P. C. Woodland, "Improved discriminative training techniques for large vocabulary continuous speech recognition," in Proc. ICASSP, 2001.
    • (2001) Proc. ICASSP
    • Povey, D.1    Woodland, P.C.2
  • 12
    • 56149112485 scopus 로고    scopus 로고
    • Discriminative noise adaptive training approach for an environment migration
    • B.-O. Kang, H.-Y. Jung, and Y.-K. Lee, "Discriminative noise adaptive training approach for an environment migration," in Proc. Interspeech, 2007.
    • (2007) Proc. Interspeech
    • Kang, B.-O.1    Jung, H.-Y.2    Lee, Y.-K.3
  • 13
    • 70349194599 scopus 로고    scopus 로고
    • Noise adaptive training using a vector taylor series approach for noise robust automatic speech recognition
    • O. Kalinli, M. Seltzer, and A. Acero, "Noise adaptive training using a vector taylor series approach for noise robust automatic speech recognition," in Proc. ICASSP, 2009.
    • (2009) Proc. ICASSP
    • Kalinli, O.1    Seltzer, M.2    Acero, A.3
  • 15
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • D. Rubin and D. Thayer, "EM algorithms for ML factor analysis," Psychometrika, vol. 47, pp. 69-76, 1982.
    • (1982) Psychometrika , vol.47 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 17
    • 0033884177 scopus 로고    scopus 로고
    • Maximum likelihood and minimum classification error factor analysis for automatic speech recognition
    • L. Saul and M. Rahim, "Maximum likelihood and minimum classification error factor analysis for automatic speech recognition," IEEE Transactions Speech and Audio Processing, vol. 8, pp. 115-125, 2000.
    • (2000) IEEE Transactions Speech and Audio Processing , vol.8 , pp. 115-125
    • Saul, L.1    Rahim, M.2
  • 18
    • 70450185894 scopus 로고    scopus 로고
    • Incremental adaptation with vts and joint adaptively trained systems
    • F. Flego and M. Gales, "Incremental adaptation with vts and joint adaptively trained systems," in Proc. Interspeech, 2009.
    • (2009) Proc. Interspeech
    • Flego, F.1    Gales, M.2
  • 19
    • 4544265717 scopus 로고    scopus 로고
    • Discriminative training for large vocabulary speech recognition,
    • Ph.D. dissertation, Cambridge University
    • D. Povey, "Discriminative training for large vocabulary speech recognition," Ph.D. dissertation, Cambridge University, 2003.
    • (2003)
    • Povey, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.