메뉴 건너뛰기




Volumn 14, Issue 10, 2013, Pages 6019-6023

Prediction models for solitary pulmonary nodules based on curvelet textural features and clinical parameters

Author keywords

Curvelet; Solitary pulmonary nodule; Support vector machine; Texture extraction

Indexed keywords

ADOLESCENT; ADULT; AGED; ARTICLE; CANCER STAGING; COMPARATIVE STUDY; COMPUTER ASSISTED TOMOGRAPHY; DIFFERENTIAL DIAGNOSIS; FEMALE; FOLLOW UP; HUMAN; LUNG NODULE; LUNG TUMOR; MALE; MIDDLE AGED; PROGNOSIS; RADIOGRAPHY; STATISTICAL MODEL; VERY ELDERLY; YOUNG ADULT;

EID: 84890482499     PISSN: 15137368     EISSN: None     Source Type: Journal    
DOI: 10.7314/APJCP.2013.14.10.6019     Document Type: Article
Times cited : (11)

References (32)
  • 1
    • 84861988204 scopus 로고    scopus 로고
    • ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform
    • Acharya UR, Faust O, Sree SV, et al (2012). ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed, 107, 233-41.
    • (2012) Comput Methods Programs Biomed , vol.107 , pp. 233-241
    • Acharya, U.R.1    Faust, O.2    Sree, S.V.3
  • 2
    • 81555221633 scopus 로고    scopus 로고
    • Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation
    • Alzubi S, Islam N, Abbod M (2011). Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. Int J Biomed Imaging, 2011, 136034.
    • (2011) Int J Biomed Imaging , vol.2011 , pp. 136034
    • Alzubi, S.1    Islam, N.2    Abbod, M.3
  • 3
    • 84860641166 scopus 로고    scopus 로고
    • Solid waste bin level detection using gray level co-occurrence matrix feature extraction approach
    • Arebey M, Hannan MA, Begum RA, et al (2012). Solid waste bin level detection using gray level co-occurrence matrix feature extraction approach. J Environ Manage, 104, 9-18.
    • (2012) J Environ Manage , vol.104 , pp. 9-18
    • Arebey, M.1    Hannan, M.A.2    Begum, R.A.3
  • 4
    • 0037216616 scopus 로고    scopus 로고
    • Classification, staging and prognosis of lung cancer
    • Beadsmoore CJ, Screaton NJ (2003). Classification, staging and prognosis of lung cancer. Eur J Radiol, 45, 8-17.
    • (2003) Eur J Radiol , vol.45 , pp. 8-17
    • Beadsmoore, C.J.1    Screaton, N.J.2
  • 5
    • 84855564324 scopus 로고    scopus 로고
    • Improving imbalanced scientific text classification using sampling strategies and dictionaries
    • Borrajo L, Romero R, Iglesias EL, et al (2011). Improving imbalanced scientific text classification using sampling strategies and dictionaries. J Integr Bioinform, 8, 176.
    • (2011) J Integr Bioinform , vol.8 , pp. 176
    • Borrajo, L.1    Romero, R.2    Iglesias, E.L.3
  • 6
    • 33846435689 scopus 로고    scopus 로고
    • A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography
    • Dettori L, Semler L (2007). A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comput Biol Med, 37, 486-98.
    • (2007) Comput Biol Med , vol.37 , pp. 486-498
    • Dettori, L.1    Semler, L.2
  • 7
    • 84856839356 scopus 로고    scopus 로고
    • Wavelet-based energy features for glaucomatous image classification
    • Dua S., Acharya UR, Chowriappa P, et al (2012). Wavelet-based energy features for glaucomatous image classification. IEEE Trans Inf Technol Biomed, 16, 80-7.
    • (2012) IEEE Trans Inf Technol Biomed , vol.16 , pp. 80-87
    • Dua, S.1    Acharya, U.R.2    Chowriappa, P.3
  • 8
    • 77952237386 scopus 로고    scopus 로고
    • Breast cancer diagnosis in digital mammogram using multiscale curvelet transform
    • Eltoukhy MM, Faye I, Samir BB (2010). Breast cancer diagnosis in digital mammogram using multiscale curvelet transform. Comput Med Imaging Graph, 34, 269-76.
    • (2010) Comput Med Imaging Graph , vol.34 , pp. 269-276
    • Eltoukhy, M.M.1    Faye, I.2    Samir, B.B.3
  • 9
    • 0033630337 scopus 로고    scopus 로고
    • Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions
    • Erasmus JJ, Connolly JE., McAdams HP, et al (2000). Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics, 20, 43-58.
    • (2000) Radiographics , vol.20 , pp. 43-58
    • Erasmus, J.J.1    Connolly, J.E.2    McAdams, H.P.3
  • 10
    • 33847167612 scopus 로고    scopus 로고
    • A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules
    • Gould MK, Ananth L, Barnett PG (2007). A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules. Chest, 131, 383-8.
    • (2007) Chest , vol.131 , pp. 383-388
    • Gould, M.K.1    Ananth, L.2    Barnett, P.G.3
  • 11
    • 84865574771 scopus 로고    scopus 로고
    • Multifocus color image fusion based on quaternion curvelet transform
    • Guo L, Dai M, Zhu M (2012). Multifocus color image fusion based on quaternion curvelet transform. Opt Express, 20, 18846-60.
    • (2012) Opt Express , vol.20 , pp. 18846-18860
    • Guo, L.1    Dai, M.2    Zhu, M.3
  • 12
    • 0027526918 scopus 로고
    • Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis
    • Gurney JW (1993). Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis. Part I. Theory. Radiology, 186, 405-13.
    • (1993) Part I. Theory. Radiology , vol.186 , pp. 405-413
    • Gurney, J.W.1
  • 13
    • 80054695711 scopus 로고    scopus 로고
    • Lung cancer in Oregon
    • Hart J (2011). Lung cancer in Oregon. Dose Response, 9, 410-5.
    • (2011) Dose Response , vol.9 , pp. 410-415
    • Hart, J.1
  • 14
    • 0030729353 scopus 로고    scopus 로고
    • Neural networks for the analysis of small pulmonary nodules
    • Henschke CI, Yankelevitz DF, Mateescu I, et al (1997). Neural networks for the analysis of small pulmonary nodules. Clin Imaging 21, 390-9.
    • (1997) Clin Imaging , vol.21 , pp. 390-399
    • Henschke, C.I.1    Yankelevitz, D.F.2    Mateescu, I.3
  • 15
    • 27144497505 scopus 로고    scopus 로고
    • Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography
    • Herder GJ, van Tinteren H, Golding RP, et al (2005). Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography. Chest, 128, 2490-6.
    • (2005) Chest , vol.128 , pp. 2490-2496
    • Herder, G.J.1    van Tinteren, H.2    Golding, R.P.3
  • 16
    • 0025727464 scopus 로고
    • Solitary pulmonary nodules: comparison of classification with standard, thinsection, and reference phantom CT
    • Khan A, Herman PG, Vorwerk P, et al (1991). Solitary pulmonary nodules: comparison of classification with standard, thinsection, and reference phantom CT. Radiology, 179, 477-81.
    • (1991) Radiology , vol.179 , pp. 477-481
    • Khan, A.1    Herman, P.G.2    Vorwerk, P.3
  • 17
    • 84883337701 scopus 로고    scopus 로고
    • Estimation of neural firing rate: the wavelet density estimation approach
    • Khorasani A, Daliri MR (2013). Estimation of neural firing rate: the wavelet density estimation approach. Biomed Tech (Berl), 58, 377-86.
    • (2013) Biomed Tech (Berl) , vol.58 , pp. 377-386
    • Khorasani, A.1    Daliri, M.R.2
  • 18
    • 84857385844 scopus 로고    scopus 로고
    • Pulmonary Nodules: growth rate assessment in patients by using serial CT and three-dimensional volumetry
    • Ko JP, Berman EJ, Kaur M, et al (2012). Pulmonary Nodules: growth rate assessment in patients by using serial CT and three-dimensional volumetry. Radiology, 262, 662-71.
    • (2012) Radiology , vol.262 , pp. 662-671
    • Ko, J.P.1    Berman, E.J.2    Kaur, M.3
  • 19
    • 80052463106 scopus 로고    scopus 로고
    • Development and validation of a clinical prediction model to estimate the probability of malignancy in solitary pulmonary nodules in Chinese people
    • Li Y, Chen KZ, Wang J (2011). Development and validation of a clinical prediction model to estimate the probability of malignancy in solitary pulmonary nodules in Chinese people. Clin Lung Cancer, 12, 313-9.
    • (2011) Clin Lung Cancer , vol.12 , pp. 313-319
    • Li, Y.1    Chen, K.Z.2    Wang, J.3
  • 20
    • 84922686225 scopus 로고    scopus 로고
    • Combined surgical intervention treatments for lung cancer and coronary heart disease patients
    • Ma X, Zhang Z, Hu Y, et al (2012). Combined surgical intervention treatments for lung cancer and coronary heart disease patients. Zhongguo Fei Ai Za Zhi, 15, 602-5.
    • (2012) Zhongguo Fei Ai Za Zhi , vol.15 , pp. 602-605
    • Ma, X.1    Zhang, Z.2    Hu, Y.3
  • 21
    • 0036182280 scopus 로고    scopus 로고
    • Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis
    • Matsuki Y, Nakamura K, Watanabe H, et al (2002). Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. AJR Am J Roentgenol, 178, 657-63.
    • (2002) AJR Am J Roentgenol , vol.178 , pp. 657-663
    • Matsuki, Y.1    Nakamura, K.2    Watanabe, H.3
  • 22
    • 77950859535 scopus 로고    scopus 로고
    • A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram
    • Meselhy Eltoukhy M, Faye I, Belhaouari Samir B (2010). A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput Biol Med, 40, 384-91.
    • (2010) Comput Biol Med , vol.40 , pp. 384-391
    • Meselhy Eltoukhy, M.1    Faye, I.2    Belhaouari Samir, B.3
  • 23
    • 0034009298 scopus 로고    scopus 로고
    • Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks
    • Nakamura K., Yoshida H, Engelmann R, et al (2000). Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology, 214, 823-30.
    • (2000) Radiology , vol.214 , pp. 823-830
    • Nakamura, K.1    Yoshida, H.2    Engelmann, R.3
  • 24
    • 41849097085 scopus 로고    scopus 로고
    • Validation of two models to estimate the probability of malignancy in patients with solitary pulmonary nodules
    • Schultz EM, Sanders GD, Trotter PR, et al (2008). Validation of two models to estimate the probability of malignancy in patients with solitary pulmonary nodules. Thorax, 63, 335-41.
    • (2008) Thorax , vol.63 , pp. 335-341
    • Schultz, E.M.1    Sanders, G.D.2    Trotter, P.R.3
  • 25
    • 84869492886 scopus 로고    scopus 로고
    • Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions
    • Soerjomataram I, Lortet-Tieulent J, Parkin DM, et al (2012). Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 380, 1840-50.
    • (2012) Lancet , vol.380 , pp. 1840-1850
    • Soerjomataram, I.1    Lortet-Tieulent, J.2    Parkin, D.M.3
  • 27
    • 84877744350 scopus 로고    scopus 로고
    • Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data
    • Sun T, Zhang R, Wang J, et al (2013b). Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data. PLoS One, 8, e63559.
    • (2013) PLoS One , vol.8
    • Sun, T.1    Zhang, R.2    Wang, J.3
  • 28
    • 0031403024 scopus 로고    scopus 로고
    • The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules
    • Swensen SJ, Silverstein MD, Ilstrup DM, et al (1997). The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med, 157, 849-55.
    • (1997) Arch Intern Med , vol.157 , pp. 849-855
    • Swensen, S.J.1    Silverstein, M.D.2    Ilstrup, D.M.3
  • 29
    • 77950065664 scopus 로고    scopus 로고
    • Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image
    • Wang H, Guo XH, Jia ZW, et al (2010). Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image. Eur J Radiol, 74, 124-9.
    • (2010) Eur J Radiol , vol.74 , pp. 124-129
    • Wang, H.1    Guo, X.H.2    Jia, Z.W.3
  • 30
    • 67649607477 scopus 로고    scopus 로고
    • Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features
    • Way TW, Sahiner B, Chan HP, et al (2009). Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med Phys, 36, 3086-98.
    • (2009) Med Phys , vol.36 , pp. 3086-3098
    • Way, T.W.1    Sahiner, B.2    Chan, H.P.3
  • 31
    • 84880159413 scopus 로고    scopus 로고
    • Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography
    • Wu H, Sun T, Wang J, et al (2013). Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography. J Digit Imaging, 26, 797-802.
    • (2013) J Digit Imaging , vol.26 , pp. 797-802
    • Wu, H.1    Sun, T.2    Wang, J.3
  • 32
    • 84884569615 scopus 로고    scopus 로고
    • Automatic Delineation of the Myocardial Wall from CT Images via Shape Segmentation and Variational Region Growing
    • Zhu L, Gao Y, Appia V, et al (2013). Automatic Delineation of the Myocardial Wall from CT Images via Shape Segmentation and Variational Region Growing. IEEE Trans Biomed Eng, 60, 2887-95.
    • (2013) IEEE Trans Biomed Eng , vol.60 , pp. 2887-2895
    • Zhu, L.1    Gao, Y.2    Appia, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.