메뉴 건너뛰기




Volumn , Issue , 2013, Pages 8505-8509

Co-training succeeds in Computational Paralinguistics

Author keywords

Co Training; Computational Paralinguistics; Emotion; Gender; Semi supervised Learning; Sleepiness

Indexed keywords

CO-TRAINING; EMOTION; GENDER; PARALINGUISTICS; SEMI-SUPERVISED LEARNING; SLEEPINESS;

EID: 84890466615     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2013.6639325     Document Type: Conference Paper
Times cited : (18)

References (32)
  • 2
    • 85032750851 scopus 로고    scopus 로고
    • The computational paralinguistics challenge
    • B. Schuller, "The computational paralinguistics challenge," Signal Processing Magazine, IEEE, vol. 29, no. 4, pp. 97-101, 2012.
    • (2012) Signal Processing Magazine, IEEE , vol.29 , Issue.4 , pp. 97-101
    • Schuller, B.1
  • 4
    • 84878381243 scopus 로고    scopus 로고
    • Active learning by sparse instance tracking and classifier confidence in acoustic emotion recognition
    • Z. Zhang and B. Schuller, "Active Learning by Sparse Instance Tracking and Classifier Confidence in Acoustic Emotion Recognition," in Proc. INTERSPEECH 2012, Portland, OR, 2012.
    • (2012) Proc. INTERSPEECH 2012, Portland, or
    • Zhang, Z.1    Schuller, B.2
  • 6
    • 33745456231 scopus 로고    scopus 로고
    • Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, Tech. Rep. TR 1530
    • X. Zhu, "Semi-supervised learning literature survey," Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, Tech. Rep. TR 1530, 2006.
    • (2006) Semi-supervised learning literature survey
    • Zhu, X.1
  • 7
    • 84867599761 scopus 로고    scopus 로고
    • Semi-supervised learning helps in sound event classification
    • Kyoto, Japan
    • Z. Zhang and B. Schuller, "Semi-supervised learning helps in sound event classification," in Proc. ICASSP 2012, Kyoto, Japan, 2012, pp. 333-336.
    • (2012) Proc. ICASSP 2012 , pp. 333-336
    • Zhang, Z.1    Schuller, B.2
  • 8
    • 11144239919 scopus 로고    scopus 로고
    • Unsupervised training of acoustic models for large vocabulary continuous speech recognition
    • F. Wessel and H. Ney, "Unsupervised training of acoustic models for large vocabulary continuous speech recognition," IEEE Transactions on Speech and Audio Processing, vol. 13, no. 1, pp. 23-31, 2005.
    • (2005) IEEE Transactions on Speech and Audio Processing , vol.13 , Issue.1 , pp. 23-31
    • Wessel, F.1    Ney, H.2
  • 9
    • 79951779719 scopus 로고    scopus 로고
    • Unsupervised training and directed manual transcription for LVCSR
    • K. Yu, M. Gales, L. Wang, and P. Woodland, "Unsupervised training and directed manual transcription for LVCSR," Speech Communication, vol. 52, no. 7, pp. 652-663, 2010.
    • (2010) Speech Communication , vol.52 , Issue.7 , pp. 652-663
    • Yu, K.1    Gales, M.2    Wang, L.3    Woodland, P.4
  • 13
    • 70450206416 scopus 로고    scopus 로고
    • The interspeech 2009 emotion challenge
    • Brighton, UK
    • B. Schuller, S. Steidl, and A. Batliner, "The INTERSPEECH 2009 Emotion Challenge," in Proc. INTERSPEECH, Brighton, UK, 2009, pp. 312-315.
    • (2009) Proc. INTERSPEECH , pp. 312-315
    • Schuller, B.1    Steidl, S.2    Batliner, A.3
  • 17
    • 68949194679 scopus 로고    scopus 로고
    • Acoustic sleepiness detection-Framework and validation of a speech adapted pattern recognition approach
    • J. Krajewski, A. Batliner, and M. Golz, "Acoustic sleepiness detection -Framework and validation of a speech adapted pattern recognition approach," Behavior Research Methods, vol. 41, pp. 795-804, 2009.
    • (2009) Behavior Research Methods , vol.41 , pp. 795-804
    • Krajewski, J.1    Batliner, A.2    Golz, M.3
  • 19
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Z. Zhou and M. Li, "Tri-training: Exploiting unlabeled data using three classifiers," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 11, pp. 1529-1541, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.1    Li, M.2
  • 20
    • 78650977476 scopus 로고    scopus 로고
    • Opensmile\-The munich versatile and fast open-source audio feature extractor
    • Florence, Italy
    • F. Eyben, M. Wollmer, and B. Schuller, "openSMILE-The Munich Versatile and Fast Open-Source Audio Feature Extractor," in Proc. ACM Multimedia (MM), Florence, Italy, 2010, pp. 1459-1462.
    • (2010) Proc. ACM Multimedia (MM) , pp. 1459-1462
    • Eyben, F.1    Wollmer, M.2    Schuller, B.3
  • 23
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S. Salzberg, "On comparing classifiers: Pitfalls to avoid and a recommended approach," Data mining and knowledge discovery, vol. 1, no. 3, pp. 317-328, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.1
  • 24
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Machine learning, vol. 39, no. 2, pp. 103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 28
    • 84864995355 scopus 로고    scopus 로고
    • Co-training of context models for real-time vehicle detection
    • Alcala de Henares, Spain
    • A. Gepperth, "Co-training of context models for real-time vehicle detection," in Proc. 2012 IEEE Intelligent Vehicles Symposium (IV), Alcala de Henares, Spain, 2012, pp. 814-820.
    • (2012) Proc. 2012 IEEE Intelligent Vehicles Symposium (IV) , pp. 814-820
    • Gepperth, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.