-
2
-
-
85032750851
-
The computational paralinguistics challenge
-
B. Schuller, "The computational paralinguistics challenge," Signal Processing Magazine, IEEE, vol. 29, no. 4, pp. 97-101, 2012.
-
(2012)
Signal Processing Magazine, IEEE
, vol.29
, Issue.4
, pp. 97-101
-
-
Schuller, B.1
-
3
-
-
84867332081
-
Paralinguistics in speech and language-state-of-The-art and the challenge
-
B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers, C. Muller, and S. Narayanan, "Paralinguistics in Speech and Language-State-of-The-Art and the Challenge," Computer Speech &Language, Special issue on Paralinguistics in Naturalistic Speech and Language, vol. 27, no. 1, pp. 4-39, 2013.
-
(2013)
Computer Speech &Language, Special Issue on Paralinguistics in Naturalistic Speech and Language
, vol.27
, Issue.1
, pp. 4-39
-
-
Schuller, B.1
Steidl, S.2
Batliner, A.3
Burkhardt, F.4
Devillers, L.5
Muller, C.6
Narayanan, S.7
-
4
-
-
84878381243
-
Active learning by sparse instance tracking and classifier confidence in acoustic emotion recognition
-
Z. Zhang and B. Schuller, "Active Learning by Sparse Instance Tracking and Classifier Confidence in Acoustic Emotion Recognition," in Proc. INTERSPEECH 2012, Portland, OR, 2012.
-
(2012)
Proc. INTERSPEECH 2012, Portland, or
-
-
Zhang, Z.1
Schuller, B.2
-
5
-
-
80054840766
-
Active class selection for arousal classification
-
Memphis, TN
-
D.Wu and T. Parsons, "Active class selection for arousal classification," in Proc. Affective Computing and Intelligent Interaction (ACII), Memphis, TN, 2011, pp. 132-141.
-
(2011)
Proc. Affective Computing and Intelligent Interaction (ACII)
, pp. 132-141
-
-
Wu, D.1
Parsons, T.2
-
6
-
-
33745456231
-
-
Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, Tech. Rep. TR 1530
-
X. Zhu, "Semi-supervised learning literature survey," Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, Tech. Rep. TR 1530, 2006.
-
(2006)
Semi-supervised learning literature survey
-
-
Zhu, X.1
-
7
-
-
84867599761
-
Semi-supervised learning helps in sound event classification
-
Kyoto, Japan
-
Z. Zhang and B. Schuller, "Semi-supervised learning helps in sound event classification," in Proc. ICASSP 2012, Kyoto, Japan, 2012, pp. 333-336.
-
(2012)
Proc. ICASSP 2012
, pp. 333-336
-
-
Zhang, Z.1
Schuller, B.2
-
8
-
-
11144239919
-
Unsupervised training of acoustic models for large vocabulary continuous speech recognition
-
F. Wessel and H. Ney, "Unsupervised training of acoustic models for large vocabulary continuous speech recognition," IEEE Transactions on Speech and Audio Processing, vol. 13, no. 1, pp. 23-31, 2005.
-
(2005)
IEEE Transactions on Speech and Audio Processing
, vol.13
, Issue.1
, pp. 23-31
-
-
Wessel, F.1
Ney, H.2
-
9
-
-
79951779719
-
Unsupervised training and directed manual transcription for LVCSR
-
K. Yu, M. Gales, L. Wang, and P. Woodland, "Unsupervised training and directed manual transcription for LVCSR," Speech Communication, vol. 52, no. 7, pp. 652-663, 2010.
-
(2010)
Speech Communication
, vol.52
, Issue.7
, pp. 652-663
-
-
Yu, K.1
Gales, M.2
Wang, L.3
Woodland, P.4
-
10
-
-
84858985413
-
Unsupervised learning in cross-corpus acoustic emotion recognition
-
Big Island, HY
-
Z. Zhang, F. Weninger, M. Wollmer, and B. Schuller, "Unsupervised Learning in Cross-Corpus Acoustic Emotion Recognition," in Proc. IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Big Island, HY, 2011, pp. 523-528.
-
(2011)
Proc. IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
, pp. 523-528
-
-
Zhang, Z.1
Weninger, F.2
Wollmer, M.3
Schuller, B.4
-
11
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
Madison, WI
-
A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. 11th annual conference on Computational Learning Theory, Madison, WI, 1998, pp. 92-100.
-
(1998)
Proc. 11th Annual Conference on Computational Learning Theory
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
13
-
-
70450206416
-
The interspeech 2009 emotion challenge
-
Brighton, UK
-
B. Schuller, S. Steidl, and A. Batliner, "The INTERSPEECH 2009 Emotion Challenge," in Proc. INTERSPEECH, Brighton, UK, 2009, pp. 312-315.
-
(2009)
Proc. INTERSPEECH
, pp. 312-315
-
-
Schuller, B.1
Steidl, S.2
Batliner, A.3
-
14
-
-
84865716918
-
The interspeech 2011 speaker state challenge
-
Florence, Italy
-
B. Schuller, S. Steidl, A. Batliner, F. Schiel, and J. Krajewski, "The INTERSPEECH 2011 Speaker State Challenge," in Proc. INTERSPEECH 2011, Florence, Italy, 2011, pp. 3201-3204.
-
(2011)
Proc. INTERSPEECH 2011
, pp. 3201-3204
-
-
Schuller, B.1
Steidl, S.2
Batliner, A.3
Schiel, F.4
Krajewski, J.5
-
15
-
-
79954999224
-
The interspeech 2010 paralinguistic challenge
-
Makuhari, Japan
-
B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers, C. Muller, and S. Narayanan, "The INTERSPEECH 2010 Paralinguistic Challenge," in Proc. INTERSPEECH 2010, Makuhari, Japan, 2010, pp. 2794-2797.
-
(2010)
Proc. INTERSPEECH 2010
, pp. 2794-2797
-
-
Schuller, B.1
Steidl, S.2
Batliner, A.3
Burkhardt, F.4
Devillers, L.5
Muller, C.6
Narayanan, S.7
-
17
-
-
68949194679
-
Acoustic sleepiness detection-Framework and validation of a speech adapted pattern recognition approach
-
J. Krajewski, A. Batliner, and M. Golz, "Acoustic sleepiness detection -Framework and validation of a speech adapted pattern recognition approach," Behavior Research Methods, vol. 41, pp. 795-804, 2009.
-
(2009)
Behavior Research Methods
, vol.41
, pp. 795-804
-
-
Krajewski, J.1
Batliner, A.2
Golz, M.3
-
18
-
-
85028160834
-
A database of age and gender annotated telephone speech
-
Valletta, Malta
-
F. Burkhardt, M. Eckert, W. Johannsen, and J. Stegmann, "A Database of Age and Gender Annotated Telephone Speech," in Proc. 7th International Conference on Language Resources and Evaluation (LREC 2010), Valletta, Malta, 2010, pp. 1562-1565.
-
(2010)
Proc. 7th International Conference on Language Resources and Evaluation (LREC 2010)
, pp. 1562-1565
-
-
Burkhardt, F.1
Eckert, M.2
Johannsen, W.3
Stegmann, J.4
-
19
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Z. Zhou and M. Li, "Tri-training: Exploiting unlabeled data using three classifiers," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 11, pp. 1529-1541, 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.1
Li, M.2
-
20
-
-
78650977476
-
Opensmile\-The munich versatile and fast open-source audio feature extractor
-
Florence, Italy
-
F. Eyben, M. Wollmer, and B. Schuller, "openSMILE-The Munich Versatile and Fast Open-Source Audio Feature Extractor," in Proc. ACM Multimedia (MM), Florence, Italy, 2010, pp. 1459-1462.
-
(2010)
Proc. ACM Multimedia (MM)
, pp. 1459-1462
-
-
Eyben, F.1
Wollmer, M.2
Schuller, B.3
-
21
-
-
79953214379
-
When does co-training work in real data
-
J. Du, C. X. Ling, and Z. Zhou, "When does co-training work in real data?" IEEE Transactions on Knowledge Discovery and Data Mining, vol. 23, no. 5, pp. 788-799, 2011.
-
(2011)
IEEE Transactions on Knowledge Discovery and Data Mining
, vol.23
, Issue.5
, pp. 788-799
-
-
Du, J.1
Ling, C.X.2
Zhou, Z.3
-
22
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.Witten, "The WEKA data mining software: An update," ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10-18, 2009.
-
(2009)
ACM SIGKDD Explorations Newsletter
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
23
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
S. Salzberg, "On comparing classifiers: Pitfalls to avoid and a recommended approach," Data mining and knowledge discovery, vol. 1, no. 3, pp. 317-328, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.3
, pp. 317-328
-
-
Salzberg, S.1
-
24
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
K. Nigam, A. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Machine learning, vol. 39, no. 2, pp. 103-134, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.2
Thrun, S.3
Mitchell, T.4
-
25
-
-
80051619455
-
A boosted co-training algorithm for human action recognition
-
C. Liu and P. Yuen, "A boosted co-training algorithm for human action recognition," IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 9, pp. 1203-1213, 2011.
-
(2011)
IEEE Transactions on Circuits and Systems for Video Technology
, vol.21
, Issue.9
, pp. 1203-1213
-
-
Liu, C.1
Yuen, P.2
-
26
-
-
84862925237
-
On co-training online biometric classifiers
-
Washington DC
-
H. Bhatt, S. Bharadwaj, R. Singh, M. Vatsa, A. Noore, and A. Ross, "On co-training online biometric classifiers," in Proc. 2011 International Joint Conference on Biometrics (IJCB), Washington DC, 2011, pp. 1-7.
-
(2011)
Proc. 2011 International Joint Conference on Biometrics (IJCB)
, pp. 1-7
-
-
Bhatt, H.1
Bharadwaj, S.2
Singh, R.3
Vatsa, M.4
Noore, A.5
Ross, A.6
-
27
-
-
79951662477
-
Multi-modal music mood classification using co-training
-
Wuhan, China
-
Y. Zhao, D. Yang, and X. Chen, "Multi-modal music mood classification using co-training," in Proc. 2010 Computational Intelligence and Software Engineering (CiSE), Wuhan, China, 2010, pp. 1-4.
-
(2010)
Proc. 2010 Computational Intelligence and Software Engineering (CiSE)
, pp. 1-4
-
-
Zhao, Y.1
Yang, D.2
Chen, X.3
-
28
-
-
84864995355
-
Co-training of context models for real-time vehicle detection
-
Alcala de Henares, Spain
-
A. Gepperth, "Co-training of context models for real-time vehicle detection," in Proc. 2012 IEEE Intelligent Vehicles Symposium (IV), Alcala de Henares, Spain, 2012, pp. 814-820.
-
(2012)
Proc. 2012 IEEE Intelligent Vehicles Symposium (IV)
, pp. 814-820
-
-
Gepperth, A.1
-
29
-
-
82355168616
-
Co-training for handwritten word recognition
-
Beijing, China
-
V. Frinken, A. Fischer, H. Bunke, and A. Foornes, "Co-training for handwritten word recognition," in Proc. 2011 Document Analysis and Recognition (ICDAR), Beijing, China, 2011, pp. 314-318.
-
(2011)
Proc. 2011 Document Analysis and Recognition (ICDAR)
, pp. 314-318
-
-
Frinken, V.1
Fischer, A.2
Bunke, H.3
Foornes, A.4
-
30
-
-
46449139646
-
Speech emotion recognition using an enhanced co-training algorithm
-
Beijing, China
-
J. Liu, C. Chen, J. Bu, M. You, and J. Tao, "Speech emotion recognition using an enhanced co-training algorithm," in Proc. IEEE International Conference on Multimedia and Expo (ICME), Beijing, China, 2007, pp. 999-1002.
-
(2007)
Proc. IEEE International Conference on Multimedia and Expo (ICME)
, pp. 999-1002
-
-
Liu, J.1
Chen, C.2
Bu, J.3
You, M.4
Tao, J.5
-
31
-
-
79957848984
-
Co-training for predicting emotions with spoken dialogue data
-
Stroudsburg, PA
-
B. Maeireizo, D. Litman, and R. Hwa, "Co-training for predicting emotions with spoken dialogue data," in Proc. 42nd Annual Meeting of the Association for Computational Linguistics (ACL), Stroudsburg, PA, 2004, pp. 203-206.
-
(2004)
Proc. 42nd Annual Meeting of the Association for Computational Linguistics (ACL)
, pp. 203-206
-
-
Maeireizo, B.1
Litman, D.2
Hwa, R.3
-
32
-
-
78149476387
-
Emotional speech classification based on multi view characterization
-
Istanbul, Turkey
-
A. Mahdhaoui and M. Chetouani, "Emotional speech classification based on multi view characterization," in Proc. 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 2010, pp. 4488-4491.
-
(2010)
Proc. 20th International Conference on Pattern Recognition (ICPR)
, pp. 4488-4491
-
-
Mahdhaoui, A.1
Chetouani, M.2
|