메뉴 건너뛰기




Volumn 8921, Issue , 2013, Pages

Classification of high resolution remote sensing image based on geoontology and conditional random fields

Author keywords

Classification; Conditional Random Fields (CRF); Geo ontology; High resolution remote sensing image

Indexed keywords

CLASSIFICATION METHODS; CONDITIONAL RANDOM FIELD; GEO ONTOLOGIES; HIERARCHICAL CLASSIFICATION; HIGH RESOLUTION REMOTE SENSING IMAGES; HIGH SPATIAL RESOLUTION; MEAN SHIFT ALGORITHM; REMOTE SENSING ANALYSIS;

EID: 84890408798     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.2032323     Document Type: Conference Paper
Times cited : (2)

References (17)
  • 1
    • 84890382427 scopus 로고    scopus 로고
    • Adaptive regional feature extraction for very high spatial resolution image classification
    • L. Wang, Q. Dai, L. Hong et al., "Adaptive regional feature extraction for very high spatial resolution image classification," Journal of Applied Remote Sensing, 6(1), 063506-1-063506-16 (2012).
    • (2012) Journal of Applied Remote Sensing , vol.6 , Issue.1 , pp. 0635061-06350616
    • Wang, L.1    Dai, Q.2    Hong, L.3
  • 2
    • 82155170594 scopus 로고    scopus 로고
    • Classification of high-spatial resolution imagery based on distance-weighted Markov random field with an improved iterated conditional mode method
    • Q. Zhang, L. Zhang, and X. Huang, "Classification of high-spatial resolution imagery based on distance-weighted Markov random field with an improved iterated conditional mode method," International Journal of Remote Sensing, 32(24), 9843-9868 (2011).
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.24 , pp. 9843-9868
    • Zhang, Q.1    Zhang, L.2    Huang, X.3
  • 3
    • 52649118668 scopus 로고    scopus 로고
    • A multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform
    • X. Huang, L. Zhang, and P. Li, "A multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform," International Journal of Remote Sensing, 29(20), 5923-5941 (2008).
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.20 , pp. 5923-5941
    • Huang, X.1    Zhang, L.2    Li, P.3
  • 5
    • 84876437564 scopus 로고    scopus 로고
    • A hybrid method combining pixel-based and object-oriented methods and its application in hungary using chinese hj-1 satellite images
    • X. Li, Q. Meng, X. Gu et al., "A hybrid method combining pixel-based and object-oriented methods and its application in Hungary using Chinese HJ-1 satellite images," International Journal of Remote Sensing, 34(13), 4655-4668 (2013).
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.13 , pp. 4655-4668
    • Li, X.1    Meng, Q.2    Gu, X.3
  • 6
    • 0036564143 scopus 로고    scopus 로고
    • A MRF model-based segmentation approach to classification for multispectral imagery
    • A. Sarkar, M. K. Biswas, B. Kartikeyan et al., "A MRF model-based segmentation approach to classification for multispectral imagery," Geoscience and Remote Sensing, IEEE Transactions on, 40(5), 1102-1113 (2002).
    • (2002) Geoscience and Remote Sensing, IEEE Transactions on , vol.40 , Issue.5 , pp. 1102-1113
    • Sarkar, A.1    Biswas, M.K.2    Kartikeyan, B.3
  • 8
    • 80051758021 scopus 로고    scopus 로고
    • Learning sparse conditional random fields to select features for land development classification
    • P. Zhong, F. Liu, and R. Wang, "Learning sparse conditional random fields to select features for land development classification," International Journal of Remote Sensing, 32(15), 4203-4219 (2011).
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.15 , pp. 4203-4219
    • Zhong, P.1    Liu, F.2    Wang, R.3
  • 9
    • 69949122268 scopus 로고    scopus 로고
    • Learning sparse CRFs for feature selection and classification of hyperspectral imagery
    • P. Zhong, and R. Wang, "Learning sparse CRFs for feature selection and classification of hyperspectral imagery," Geoscience and Remote Sensing, IEEE Transactions on, 46(12), 4186-4197 (2008).
    • (2008) Geoscience and Remote Sensing, IEEE Transactions on , vol.46 , Issue.12 , pp. 4186-4197
    • Zhong, P.1    Wang, R.2
  • 11
    • 84864744966 scopus 로고    scopus 로고
    • Knowledge-based region labeling for remote sensing image interpretation
    • G. Forestier, A. Puissant, C. Wemmert et al., "Knowledge-based region labeling for remote sensing image interpretation," Computers, Environment and Urban Systems, 36(5), 470-480 (2012).
    • (2012) Computers, Environment and Urban Systems , vol.36 , Issue.5 , pp. 470-480
    • Forestier, G.1    Puissant, A.2    Wemmert, C.3
  • 13
    • 67650654921 scopus 로고    scopus 로고
    • Mean shift-based clustering analysis of multispectral remote sensing imagery
    • S. Bo, L. Ding, H. Li et al., "Mean shift-based clustering analysis of multispectral remote sensing imagery," International Journal of Remote Sensing, 30(4), 817-827 (2009).
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.4 , pp. 817-827
    • Bo, S.1    Ding, L.2    Li, H.3
  • 16
    • 0141885057 scopus 로고    scopus 로고
    • A tree-structured Markov random field model for Bayesian image segmentation
    • C. D'Elia, G. Poggi, and G. Scarpa, "A tree-structured Markov random field model for Bayesian image segmentation," Image Processing, IEEE Transactions on, 12(10), 1259-1273 (2003).
    • (2003) Image Processing, IEEE Transactions on , vol.12 , Issue.10 , pp. 1259-1273
    • D'Elia, C.1    Poggi, G.2    Scarpa, G.3
  • 17
    • 70350341668 scopus 로고    scopus 로고
    • Supervised image segmentation based on tree-structured MRF model in wavelet domain
    • G. Liu, Q. Qin, T. Mei et al., "Supervised image segmentation based on tree-structured MRF model in wavelet domain," Geoscience and Remote Sensing Letters, IEEE, 6(4), 850-854 (2009).
    • (2009) Geoscience and Remote Sensing Letters, IEEE , vol.6 , Issue.4 , pp. 850-854
    • Liu, G.1    Qin, Q.2    Mei, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.