메뉴 건너뛰기




Volumn , Issue , 2005, Pages 275-282

Batch neural gas

Author keywords

Batch algorithm; Cost function; Neural gas; Proximity data

Indexed keywords

BATCH ALGORITHMS; BATCH NEURAL GAS; FASTER CONVERGENCE; NEURAL GAS; PROXIMITY DATA;

EID: 84890264789     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (22)
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA, University of California, Department of Information and Computer Science
    • C.L. Blake and C.J. Merz (1998), UCI Repository of machine learning databases, Irvine, CA, University of California, Department of Information and Computer Science.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 5
    • 0000736461 scopus 로고    scopus 로고
    • Convergence and ordering of kohonen's batch map
    • Y. Cheng (1997), Convergence and ordering of Kohonen's batch map, Neur. Comp. 9: 1667-1676.
    • (1997) Neur. Comp. , vol.9 , pp. 1667-1676
    • Cheng, Y.1
  • 6
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the SOM algorithm
    • M. Cottrell, J.C. Fort, and G. Pagès (1999), Theoretical aspects of the SOM algorithm, Neurocomputing 21: 119-138.
    • (1999) Neurocomputing , vol.21 , pp. 119-138
    • Cottrell, M.1    Fort, J.C.2    Pagès, G.3
  • 7
    • 9144249823 scopus 로고    scopus 로고
    • SOM-based algorithms for qualitative variables
    • M. Cottrell, S. Ibbou, and P. Letrémy (2004), SOM-based algorithms for qualitative variables, Neural Networks 17: 1149-1168.
    • (2004) Neural Networks , vol.17 , pp. 1149-1168
    • Cottrell, M.1    Ibbou, S.2    Letrémy, P.3
  • 9
    • 33745902277 scopus 로고    scopus 로고
    • Advantages and drawbacks of the batch kohonen algorithm
    • M. Verleysen (ed.) D Facto
    • J.-C. Fort, P. Letrémy, and M. Cottrell (2002), Advantages and drawbacks of the Batch Kohonen algorithm, in ESANN'2002, M. Verleysen (ed.), 223-230, D Facto.
    • (2002) ESANN'2002 , pp. 223-230
    • Fort, J.-C.1    Letrémy, P.2    Cottrell, M.3
  • 10
    • 0032602777 scopus 로고    scopus 로고
    • A self-organizing map for proximity data
    • T. Graepel and K. Obermayer (1999), A self-organizing map for proximity data, Neur. Comp. 11: 139-155.
    • (1999) Neur. Comp. , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 12
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • T. Heskes (2001), Self-organizing maps, vector quantization, and mixture modeling, IEEE Transactions on Neural Networks, 12: 1299-1305.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1299-1305
    • Heskes, T.1
  • 14
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • T. Kohonen and P. Somervuo (2002), How to make large self-organizing maps for nonvectorial data, Neural Networks 15: 945-952.
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 15
    • 0027632248 scopus 로고
    • 'Neural-gas' network for vector quantization and its application to time-series prediction
    • T. Martinetz, S.G. Berkovich, and K.J. Schulten (1993), 'Neural-gas' network for vector quantization and its application to time-series prediction, IEEE Transactions on Neural Networks 4: 558-569.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.G.2    Schulten, K.J.3
  • 16
  • 18
    • 0346841737 scopus 로고    scopus 로고
    • Neural Networks Research Centre, Helsinki University of Technology
    • Neural Networks Research Centre, Helsinki University of Technology, SOM Toolbox, http://www.cis.hut.fi/projects/somtoolbox/
    • SOM Toolbox
  • 20
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • S. Seo and K. Obermayer (2004), Self-organizing maps and clustering methods for matrix data, Neural Networks 17: 1211-1230.
    • (2004) Neural Networks , vol.17 , pp. 1211-1230
    • Seo, S.1    Obermayer, K.2
  • 21
    • 0029921179 scopus 로고    scopus 로고
    • Quantifying the local reliability of a sequence alignment
    • H. Mevissen and M. Vingron (1996), Quantifying the local reliability of a sequence alignment, Protein Engineering 9: 127-132.
    • (1996) Protein Engineering , vol.9 , pp. 127-132
    • Mevissen, H.1    Vingron, M.2
  • 22
    • 0031097231 scopus 로고
    • Topology preservation in self-organizing feature maps: Exact definition and measurement
    • T. Villmann, R. Der, M. Herrmann, and T. Martinetz (1994), Topology preservation in self-organizing feature maps: exact definition and measurement, IEEE Transactions on Neural Networks 2: 256-266.
    • (1994) IEEE Transactions on Neural Networks , vol.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.