-
2
-
-
0003408496
-
-
Irvine, CA, University of California, Department of Information and Computer Science
-
C.L. Blake and C.J. Merz (1998), UCI Repository of machine learning databases, Irvine, CA, University of California, Department of Information and Computer Science.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
5
-
-
0000736461
-
Convergence and ordering of kohonen's batch map
-
Y. Cheng (1997), Convergence and ordering of Kohonen's batch map, Neur. Comp. 9: 1667-1676.
-
(1997)
Neur. Comp.
, vol.9
, pp. 1667-1676
-
-
Cheng, Y.1
-
6
-
-
0345404393
-
Theoretical aspects of the SOM algorithm
-
M. Cottrell, J.C. Fort, and G. Pagès (1999), Theoretical aspects of the SOM algorithm, Neurocomputing 21: 119-138.
-
(1999)
Neurocomputing
, vol.21
, pp. 119-138
-
-
Cottrell, M.1
Fort, J.C.2
Pagès, G.3
-
7
-
-
9144249823
-
SOM-based algorithms for qualitative variables
-
M. Cottrell, S. Ibbou, and P. Letrémy (2004), SOM-based algorithms for qualitative variables, Neural Networks 17: 1149-1168.
-
(2004)
Neural Networks
, vol.17
, pp. 1149-1168
-
-
Cottrell, M.1
Ibbou, S.2
Letrémy, P.3
-
9
-
-
33745902277
-
Advantages and drawbacks of the batch kohonen algorithm
-
M. Verleysen (ed.) D Facto
-
J.-C. Fort, P. Letrémy, and M. Cottrell (2002), Advantages and drawbacks of the Batch Kohonen algorithm, in ESANN'2002, M. Verleysen (ed.), 223-230, D Facto.
-
(2002)
ESANN'2002
, pp. 223-230
-
-
Fort, J.-C.1
Letrémy, P.2
Cottrell, M.3
-
10
-
-
0032602777
-
A self-organizing map for proximity data
-
T. Graepel and K. Obermayer (1999), A self-organizing map for proximity data, Neur. Comp. 11: 139-155.
-
(1999)
Neur. Comp.
, vol.11
, pp. 139-155
-
-
Graepel, T.1
Obermayer, K.2
-
12
-
-
0035506768
-
Self-organizing maps, vector quantization, and mixture modeling
-
T. Heskes (2001), Self-organizing maps, vector quantization, and mixture modeling, IEEE Transactions on Neural Networks, 12: 1299-1305.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, pp. 1299-1305
-
-
Heskes, T.1
-
14
-
-
0036790769
-
How to make large self-organizing maps for nonvectorial data
-
T. Kohonen and P. Somervuo (2002), How to make large self-organizing maps for nonvectorial data, Neural Networks 15: 945-952.
-
(2002)
Neural Networks
, vol.15
, pp. 945-952
-
-
Kohonen, T.1
Somervuo, P.2
-
15
-
-
0027632248
-
'Neural-gas' network for vector quantization and its application to time-series prediction
-
T. Martinetz, S.G. Berkovich, and K.J. Schulten (1993), 'Neural-gas' network for vector quantization and its application to time-series prediction, IEEE Transactions on Neural Networks 4: 558-569.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, pp. 558-569
-
-
Martinetz, T.1
Berkovich, S.G.2
Schulten, K.J.3
-
18
-
-
0346841737
-
-
Neural Networks Research Centre, Helsinki University of Technology
-
Neural Networks Research Centre, Helsinki University of Technology, SOM Toolbox, http://www.cis.hut.fi/projects/somtoolbox/
-
SOM Toolbox
-
-
-
20
-
-
9144234927
-
Self-organizing maps and clustering methods for matrix data
-
S. Seo and K. Obermayer (2004), Self-organizing maps and clustering methods for matrix data, Neural Networks 17: 1211-1230.
-
(2004)
Neural Networks
, vol.17
, pp. 1211-1230
-
-
Seo, S.1
Obermayer, K.2
-
21
-
-
0029921179
-
Quantifying the local reliability of a sequence alignment
-
H. Mevissen and M. Vingron (1996), Quantifying the local reliability of a sequence alignment, Protein Engineering 9: 127-132.
-
(1996)
Protein Engineering
, vol.9
, pp. 127-132
-
-
Mevissen, H.1
Vingron, M.2
-
22
-
-
0031097231
-
Topology preservation in self-organizing feature maps: Exact definition and measurement
-
T. Villmann, R. Der, M. Herrmann, and T. Martinetz (1994), Topology preservation in self-organizing feature maps: exact definition and measurement, IEEE Transactions on Neural Networks 2: 256-266.
-
(1994)
IEEE Transactions on Neural Networks
, vol.2
, pp. 256-266
-
-
Villmann, T.1
Der, R.2
Herrmann, M.3
Martinetz, T.4
|