메뉴 건너뛰기




Volumn 6, Issue 4, 2013, Pages 2130-2148

A new two-stage approach to short term electrical load forecasting

Author keywords

Average daily load; Least squares support vector machines; Short term load forecasting; Two stage approach

Indexed keywords

COMMERCE; DECISION MAKING; DEREGULATION; ELECTRIC POWER PLANT LOADS; FORECASTING; POWER MARKETS; SUPPORT VECTOR MACHINES;

EID: 84877349401     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en6042130     Document Type: Article
Times cited : (10)

References (30)
  • 2
    • 0025519319 scopus 로고
    • A regression-based approach to short-term system load forecasting
    • Papalexopoulos, A.D.; Hesterberg, T.C. A regression-based approach to short-term system load forecasting. IEEE Trans. Power Syst. 1990, 5, 1535-1547.
    • (1990) IEEE Trans. Power Syst. , vol.5 , pp. 1535-1547
    • Papalexopoulos, A.D.1    Hesterberg, T.C.2
  • 3
    • 0015022169 scopus 로고
    • Short-term load forecasting using general exponential smoothing
    • PAS-90
    • Christiaanse, W.R. Short-term load forecasting using general exponential smoothing. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 900-911.
    • (1971) IEEE Trans. Power Appar. Syst. , pp. 900-911
    • Christiaanse, W.R.1
  • 5
    • 0020003295 scopus 로고
    • On-line load forecasting for energy control center application
    • PAS-101
    • Irisarri, G.D.; Widergren, S.E.; Yehsakul, P.D. On-line load forecasting for energy control center application. IEEE Power Eng. Rev. 1982, PAS-101, 71-78.
    • (1982) IEEE Power Eng. Rev , pp. 71-78
    • Irisarri, G.D.1    Widergren, S.E.2    Yehsakul, P.D.3
  • 6
    • 0030084673 scopus 로고    scopus 로고
    • Optimal fuzzy inference for short-term load forecasting
    • Mori, H.; Kobayashi, H. Optimal fuzzy inference for short-term load forecasting. IEEE Trans. Power Syst. 1996, 11, 390-396.
    • (1996) IEEE Trans. Power Syst , vol.11 , pp. 390-396
    • Mori, H.1    Kobayashi, H.2
  • 8
    • 0024001840 scopus 로고
    • An expert system based algorithm for short term load forecast
    • Rahman, S.; Bhatnagar, R. An expert system based algorithm for short term load forecast. IEEE Trans. Power Syst. 1988, 3, 392-399.
    • (1988) IEEE Trans. Power Syst , vol.3 , pp. 392-399
    • Rahman, S.1    Bhatnagar, R.2
  • 10
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44-55.
    • (2001) IEEE Trans. Power Syst , vol.16 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 11
    • 9244240793 scopus 로고    scopus 로고
    • Load forecasting using support vector Machines: A study on EUNITE competition 2001
    • Chen, B.-J.; Chang, M.-W.; Lin, C.-J. Load forecasting using support vector Machines: A study on EUNITE competition 2001. IEEE Trans. Power Syst. 2004, 19, 1821-1830.
    • (2004) IEEE Trans. Power Syst. , vol.19 , pp. 1821-1830
    • Chen, B.-J.1    Chang, M.-W.2    Lin, C.-J.3
  • 12
    • 58249135669 scopus 로고    scopus 로고
    • Electric load forecasting by support vector model
    • Hong, W.-C. Electric load forecasting by support vector model. Appl. Math. Model. 2009, 33, 2444-2454.
    • (2009) Appl. Math. Model , vol.33 , pp. 2444-2454
    • Hong, W.-C.1
  • 13
    • 32144462264 scopus 로고    scopus 로고
    • Short-term load forecasting based on an adaptive hybrid method
    • Fan, S.; Chen, L. Short-term load forecasting based on an adaptive hybrid method. IEEE Trans. Power Syst. 2006, 21, 392-401.
    • (2006) IEEE Trans. Power Syst , vol.21 , pp. 392-401
    • Fan, S.1    Chen, L.2
  • 14
    • 57449087638 scopus 로고    scopus 로고
    • Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm
    • Amjady, N.; Keynia, F. Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy 2009, 34, 46-57.
    • (2009) Energy , vol.34 , pp. 46-57
    • Amjady, N.1    Keynia, F.2
  • 15
    • 77949261436 scopus 로고    scopus 로고
    • Combined modeling for electric load forecasting with adaptive particle swarm optimization
    • Wang, J.; Zhu, S.; Zhang, W.; Lu, H. Combined modeling for electric load forecasting with adaptive particle swarm optimization. Energy 2010, 35, 1671-1678.
    • (2010) Energy , vol.35 , pp. 1671-1678
    • Wang, J.1    Zhu, S.2    Zhang, W.3    Lu, H.4
  • 16
    • 80052103053 scopus 로고    scopus 로고
    • Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm
    • Hong, W.-C. Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy 2011, 36, 5568-5578.
    • (2011) Energy , vol.36 , pp. 5568-5578
    • Hong, W.-C.1
  • 17
    • 84877317899 scopus 로고    scopus 로고
    • Evaluating combined load forecasting in large power systems and smart grids
    • doi:10.1109/TII.2012.2219063
    • Borges, C.; Penya, Y.; Fernandez, I. Evaluating combined load forecasting in large power systems and smart grids. IEEE Trans. Ind. Inf. 2013, doi:10.1109/TII.2012.2219063.
    • (2013) IEEE Trans. Ind. Inf
    • Borges, C.1    Penya, Y.2    Fernandez, I.3
  • 18
    • 84856296455 scopus 로고    scopus 로고
    • Short-term load forecasting with exponentially weighted methods
    • Taylor, J.W. Short-term load forecasting with exponentially weighted methods. IEEE Trans. Power Syst. 2012, 27, 458-464.
    • (2012) IEEE Trans. Power Syst , vol.27 , pp. 458-464
    • Taylor, J.W.1
  • 19
    • 67349202297 scopus 로고    scopus 로고
    • Short-term and midterm load forecasting using a bilevel optimization model
    • Mao, H.; Zeng, X.-J.; Leng, G.; Zhai, Y.-J.; Keane, J.A. Short-term and midterm load forecasting using a bilevel optimization model. IEEE Trans. Power Syst. 2009, 24, 1080-1090.
    • (2009) IEEE Trans. Power Syst , vol.24 , pp. 1080-1090
    • Mao, H.1    Zeng, X.-J.2    Leng, G.3    Zhai, Y.-J.4    Keane, J.A.5
  • 20
    • 80054918390 scopus 로고    scopus 로고
    • Short-term load forecasting with a new nonsymmetric penalty function
    • Kebriaei, H.; Araabi, B.N.; Rahimi-Kian, A. Short-term load forecasting with a new nonsymmetric penalty function. IEEE Trans. Power Syst. 2011, 26, 1817-1825.
    • (2011) IEEE Trans. Power Syst. , vol.26 , pp. 1817-1825
    • Kebriaei, H.1    Araabi, B.N.2    Rahimi-Kian, A.3
  • 21
    • 80054081794 scopus 로고    scopus 로고
    • Short-term multinodal load forecasting using a modified general regression neural network
    • Nose-Filho, K.; Lotufo, A.D.P.; Minussi, C.R. Short-term multinodal load forecasting using a modified general regression neural network. IEEE Trans. Power Deliv. 2011, 26, 2862-2869.
    • (2011) IEEE Trans. Power Deliv. , vol.26 , pp. 2862-2869
    • Nose-Filho, K.1    Lotufo, A.D.P.2    Minussi, C.R.3
  • 22
    • 33746191769 scopus 로고    scopus 로고
    • An efficient approach for short term load forecasting using artificial neural networks
    • Kandil, N.; Wamkeue, R.; Saad, M.; Georges, S. An efficient approach for short term load forecasting using artificial neural networks. Int. J. Electr. Power Energy Syst. 2006, 28, 525-530.
    • (2006) Int. J. Electr. Power Energy Syst. , vol.28 , pp. 525-530
    • Kandil, N.1    Wamkeue, R.2    Saad, M.3    Georges, S.4
  • 23
    • 55349147976 scopus 로고    scopus 로고
    • Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data
    • Soares, L.J.; Medeiros, M.C. Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data. Int. J. Forecast. 2008, 24, 630-644.
    • (2008) Int. J. Forecast. , vol.24 , pp. 630-644
    • Soares, L.J.1    Medeiros, M.C.2
  • 24
    • 70449525203 scopus 로고    scopus 로고
    • Power load forecasting using support vector machine and ant colony optimization
    • Niu, D.; Wang, Y.; Wu, D.D. Power load forecasting using support vector machine and ant colony optimization. Expert Syst. Appl. 2010, 37, 2531-2539.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 2531-2539
    • Niu, D.1    Wang, Y.2    Wu, D.D.3
  • 25
    • 78049527758 scopus 로고    scopus 로고
    • Short-term Maharashtra state electrical power load prediction with special emphasis on seasonal changes using a novel focused time lagged recurrent neural network based on time delay neural network model
    • Kelo, S.M.; Dudul, S.V. Short-term Maharashtra state electrical power load prediction with special emphasis on seasonal changes using a novel focused time lagged recurrent neural network based on time delay neural network model. Expert Syst. Appl. 2011, 38, 1554-1564.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 1554-1564
    • Kelo, S.M.1    Dudul, S.V.2
  • 26
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn 1995, 20, 273-297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 28
    • 84877323791 scopus 로고    scopus 로고
    • ISO New England Historical Data accessed on 12 April
    • ISO New England Historical Data. Available online: http://www.iso-ne.com/markets/hst_rpts/hstRpts.do?category=Hourly (accessed on 12 April 2013).
    • (2013)
  • 29
    • 31744444183 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting electricity demand up to a day ahead
    • Taylor, J.W.; de Menezes, L.M.; McSharry, P.E. A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecast. 2006, 22, 1-16.
    • (2006) Int. J. Forecast. , vol.22 , pp. 1-16
    • Taylor, J.W.1    de Menezes, L.M.2    McSharry, P.E.3
  • 30
    • 0043246006 scopus 로고    scopus 로고
    • Short-term electricity demand forecasting using double seasonal exponential smoothing
    • Taylor, J.W. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 2003, 54, 799-805
    • (2003) J. Oper. Res. Soc. , vol.54 , pp. 799-805
    • Taylor, J.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.