메뉴 건너뛰기




Volumn , Issue , 2011, Pages 107-123

Co-regularized least-squares for label ranking

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84890144541     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-642-14125-6_6     Document Type: Chapter
Times cited : (6)

References (25)
  • 6
    • 84898970009 scopus 로고    scopus 로고
    • Log-linear models for label ranking
    • ed. by S. Thrun, L. Saul, B. Schölkopf (MIT, Cambridge, MA
    • O. Dekel, C.D. Manning, Y. Singer, Log-linear models for label ranking, in Advances in Neural Information Processing Systems, vol. 16, ed. by S. Thrun, L. Saul, B. Schölkopf (MIT, Cambridge, MA, 2004), pp. 497-504
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 497-504
    • Dekel, O.1    Manning, C.D.2    Singer, Y.3
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1-30 (2006)
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1-30
    • Demsar, J.1
  • 12
    • 60949112451 scopus 로고    scopus 로고
    • An efficient algorithm for learning to rank from preference graphs
    • T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Järvinen, J. Boberg, An efficient algorithm for learning to rank from preference graphs. Mach. Learn. 75(1), 129-165 (2009)
    • (2009) Mach. Learn , vol.75 , Issue.1 , pp. 129-165
    • Pahikkala, T.1    Tsivtsivadze, E.2    Airola, A.3    Järvinen, J.4    Boberg, J.5
  • 14
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio, F. Girosi, Networks for approximation and learning. Proc. IEEE 78(9), 1481-1497 (1990)
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 15
    • 0000812783 scopus 로고
    • Partitioning sparse matrices with eigenvectors of graphs
    • A. Pothen, H.D. Simon, K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430-452 (1990)
    • (1990) SIAM J. Matrix Anal. Appl , vol.11 , Issue.3 , pp. 430-452
    • Pothen, A.1    Simon, H.D.2    Liou, K.-P.3
  • 17
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate gaussian process regression
    • J. Quinonero-Candela, CE. Rasmussen, A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939-1959 (2005)
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1939-1959
    • Quinonero-Candela, J.1    Rasmussen C, E.2
  • 22
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • ed. by Pat Langley ( Morgan Kaufmann Publishers, San Francisco, Ca, USA
    • A.J. Smola, B. Schölkopf, Sparse greedy matrix approximation for machine learning, in Proceedings of the 17th International Conference on Machine Learning, ed. by Pat Langley (Morgan Kaufmann Publishers, San Francisco, Ca, USA, 2000), pp. 911-918
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 911-918
    • Smola, A.J.1    Schölkopf, B.2
  • 25
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • P. Vincent, Y. Bengio, Kernel matching pursuit. Mach. Learn. 48(1-3), 165-187 (2002)
    • (2002) Mach. Learn , vol.48 , Issue.1-3 , pp. 165-187
    • Vincent, P.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.