-
1
-
-
0030396020
-
Rough sets through algebraic logic
-
M. Banerjee, and M. Chakraborty Rough sets through algebraic logic Fundam. Inform. 28 1996 211 221
-
(1996)
Fundam. Inform.
, vol.28
, pp. 211-221
-
-
Banerjee, M.1
Chakraborty, M.2
-
2
-
-
0010437206
-
Rough sets and 3-valued Lukasiewicz logic
-
M. Banerjee Rough sets and 3-valued Lukasiewicz logic Fundam. Inform. 31 1997 213 220
-
(1997)
Fundam. Inform.
, vol.31
, pp. 213-220
-
-
Banerjee, M.1
-
4
-
-
0037871236
-
Use of fuzzy set theory in introducing graded consequence in multiple valued logic
-
M.M. Gupta, T. Yamakawa, Elsevier Science Publishers, B.V., North-Holland
-
M.K. Chakraborty Use of fuzzy set theory in introducing graded consequence in multiple valued logic M.M. Gupta, T. Yamakawa, Fuzzy Logic in Knowledge-Based Systems, Decision and Control 1988 Elsevier Science Publishers, B.V., North-Holland 247 257
-
(1988)
Fuzzy Logic in Knowledge-Based Systems, Decision and Control
, pp. 247-257
-
-
Chakraborty, M.K.1
-
5
-
-
77955256980
-
Graded consequence revisited
-
M.K. Chakraborty, and S. Dutta Graded consequence revisited Fuzzy Sets Syst. 161 14 2010 1885 1905
-
(2010)
Fuzzy Sets Syst.
, vol.161
, Issue.14
, pp. 1885-1905
-
-
Chakraborty, M.K.1
Dutta, S.2
-
8
-
-
0012035490
-
A formal language for reasoning about indiscernibility
-
B. Konikowska A formal language for reasoning about indiscernibility Bull. Pol. Acad. Sci., Math. 35 1987 239 249
-
(1987)
Bull. Pol. Acad. Sci., Math.
, vol.35
, pp. 239-249
-
-
Konikowska, B.1
-
11
-
-
81155139533
-
An interval set model for learning rules from incomplete information table
-
H.X. Li, M.H. Wang, X.Z. Zhou, and J.B. Zhao An interval set model for learning rules from incomplete information table Int. J. Approx. Reason. 53 1 2012 24 37
-
(2012)
Int. J. Approx. Reason.
, vol.53
, Issue.1
, pp. 24-37
-
-
Li, H.X.1
Wang, M.H.2
Zhou, X.Z.3
Zhao, J.B.4
-
12
-
-
84861819666
-
An efficient rough feature selection algorithm with a multi-granulation view
-
J.Y. Liang, F. Wang, C.Y. Dang, and Y.H. Qian An efficient rough feature selection algorithm with a multi-granulation view Int. J. Approx. Reason. 53 6 2012 912 926
-
(2012)
Int. J. Approx. Reason.
, vol.53
, Issue.6
, pp. 912-926
-
-
Liang, J.Y.1
Wang, F.2
Dang, C.Y.3
Qian, Y.H.4
-
13
-
-
84888023478
-
Incorporating logistic regression to decision-theoretic rough sets for classifications
-
in press
-
D. Liu, T.R. Li, and D.C. Liang Incorporating logistic regression to decision-theoretic rough sets for classifications Int. J. Approx. Reason. 2013 in press http://dx.doi.org/10.1016/j.ijar.2013.02.013
-
(2013)
Int. J. Approx. Reason.
-
-
Liu, D.1
Li, T.R.2
Liang, D.C.3
-
14
-
-
84981422039
-
Logic for reasoning about knowledge
-
E. Orłowska Logic for reasoning about knowledge Z. Math. Log. Grundl. Math. 35 1989 559 572
-
(1989)
Z. Math. Log. Grundl. Math.
, vol.35
, pp. 559-572
-
-
Orłowska, E.1
-
15
-
-
0001199081
-
Kripke semantics for knowledge representation logics
-
E. Orłowska Kripke semantics for knowledge representation logics Stud. Log. XLIX 1990 255 272
-
(1990)
Stud. Log.
, vol.49
, pp. 255-272
-
-
Orłowska, E.1
-
18
-
-
0036851028
-
Rough sets and intelligent data analysis
-
Z. Pawlak Rough sets and intelligent data analysis Inf. Sci. 147 2002 1 12
-
(2002)
Inf. Sci.
, vol.147
, pp. 1-12
-
-
Pawlak, Z.1
-
21
-
-
0347226876
-
Rough logic for multi-agent systems
-
M. Masuch, L. Pólos, Lect. Notes Comput. Sci. Springer-Verlag Heidelberg
-
C. Rauszer Rough logic for multi-agent systems M. Masuch, L. Pólos, Knowledge Representation and Reasoning under Uncertainty Lect. Notes Comput. Sci. vol. 808 1994 Springer-Verlag Heidelberg 161 181
-
(1994)
Knowledge Representation and Reasoning under Uncertainty
, vol.808
, pp. 161-181
-
-
Rauszer, C.1
-
22
-
-
80052644833
-
Rough truth degrees of formulae and approximate reasoning in rough logic
-
Y.H. She, X.L. He, and G.J. Wang Rough truth degrees of formulae and approximate reasoning in rough logic Fundam. Inform. 107 1 2011 67 83
-
(2011)
Fundam. Inform.
, vol.107
, Issue.1
, pp. 67-83
-
-
She, Y.H.1
He, X.L.2
Wang, G.J.3
-
24
-
-
85037032715
-
Modal logics for knowledge representation
-
A. Meyer, M. Taitslin, Lect. Notes Comput. Sci. Springer-Verlag
-
D. Vakarelov Modal logics for knowledge representation A. Meyer, M. Taitslin, Proceedings of Symposium on Logical Foundations of Computer Science Lect. Notes Comput. Sci. vol. 363 1989 Springer-Verlag 257 277
-
(1989)
Proceedings of Symposium on Logical Foundations of Computer Science
, vol.363
, pp. 257-277
-
-
Vakarelov, D.1
-
25
-
-
55949112101
-
Quantitative logic
-
G. Wang, and H. Zhou Quantitative logic Inf. Sci. 179 3 2009 226 247
-
(2009)
Inf. Sci.
, vol.179
, Issue.3
, pp. 226-247
-
-
Wang, G.1
Zhou, H.2
-
26
-
-
52949137301
-
Variable precision rough set for group decision-making: An application
-
G. Xie, J. Zhang, K.K. Lai, and L. Yu Variable precision rough set for group decision-making: An application Int. J. Approx. Reason. 49 2 2008 331 343
-
(2008)
Int. J. Approx. Reason.
, vol.49
, Issue.2
, pp. 331-343
-
-
Xie, G.1
Zhang, J.2
Lai, K.K.3
Yu, L.4
-
27
-
-
0016459349
-
The concept of a linguistic variable and its application to approximate reasoning - I
-
L. Zadeh The concept of a linguistic variable and its application to approximate reasoning - I Inf. Sci. 8 3 1975 199 249
-
(1975)
Inf. Sci.
, vol.8
, Issue.3
, pp. 199-249
-
-
Zadeh, L.1
-
28
-
-
27744499949
-
A new theory consistency index based on deduction theorems in several logic systems
-
H.J. Zhou, and G.J. Wang A new theory consistency index based on deduction theorems in several logic systems Fuzzy Sets Syst. 157 3 2006 427 443
-
(2006)
Fuzzy Sets Syst.
, vol.157
, Issue.3
, pp. 427-443
-
-
Zhou, H.J.1
Wang, G.J.2
-
30
-
-
77958457896
-
Rough implication operator based on strong topological rough algebras
-
X.H. Zhang, Y.Y. Yao, and H. Yu Rough implication operator based on strong topological rough algebras Inform. Sci. 180 19 2010 3764 3780
-
(2010)
Inform. Sci.
, vol.180
, Issue.19
, pp. 3764-3780
-
-
Zhang, X.H.1
Yao, Y.Y.2
Yu, H.3
|