메뉴 건너뛰기




Volumn 27, Issue 12, 2013, Pages 447-456

A novel fusion approach based on induced ordered weighted averaging operators for chemometric data analysis

Author keywords

Extreme learning machine (ELM); Gaussian process regression (GPR); Induced ordered weighted averaging (IOWA) operators; Infrared spectroscopic data; Prioritized aggregation (PA)

Indexed keywords

BAYESIAN NETWORKS; EVOLUTIONARY ALGORITHMS; GAUSSIAN DISTRIBUTION; LEARNING SYSTEMS; MATHEMATICAL OPERATORS; OPTIMIZATION; SPECTROSCOPIC ANALYSIS; STATISTICAL METHODS;

EID: 84889686095     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.2557     Document Type: Article
Times cited : (18)

References (40)
  • 2
    • 0033056282 scopus 로고    scopus 로고
    • Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy
    • Blanco M, Coello J, Eustaquio A, Iturriaga H, Maspoch S. Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy. Anal. Chim. Acta 1999; 392(2-3): 237-246.
    • (1999) Anal. Chim. Acta , vol.392 , Issue.2-3 , pp. 237-246
    • Blanco, M.1    Coello, J.2    Eustaquio, A.3    Iturriaga, H.4    Maspoch, S.5
  • 3
    • 0000213005 scopus 로고
    • Potential of near-infrared Fourier transform Raman spectroscopy in food analysis
    • Ozaki Y, Cho R, Ikegaya K, Muraishi S, Kawauchi K. Potential of near-infrared Fourier transform Raman spectroscopy in food analysis. Appl. Spectrosc. 1992; 46: 1503-1507.
    • (1992) Appl. Spectrosc. , vol.46 , pp. 1503-1507
    • Ozaki, Y.1    Cho, R.2    Ikegaya, K.3    Muraishi, S.4    Kawauchi, K.5
  • 4
    • 0030881258 scopus 로고    scopus 로고
    • Determination of finishing oils in acrylic fibers by near-infrared reflectance spectroscopy
    • Blanco M, Coello J, Garcia Fraga JM, Iturriaga H, Maspoch S, Pagès J. Determination of finishing oils in acrylic fibers by near-infrared reflectance spectroscopy. Analyst 1999; 122; 777-781.
    • (1999) Analyst , vol.122 , pp. 777-781
    • Blanco, M.1    Coello, J.2    Garcia Fraga, J.M.3    Iturriaga, H.4    Maspoch, S.5    Pagès, J.6
  • 6
    • 0042031251 scopus 로고    scopus 로고
    • Using artificial neural networks for process and system modeling
    • Verikas A, Bacauskiene M. Using artificial neural networks for process and system modeling. Chemom. Intell. Lab. Syst. 2003; 67: 187-191.
    • (2003) Chemom. Intell. Lab. Syst. , vol.67 , pp. 187-191
    • Verikas, A.1    Bacauskiene, M.2
  • 7
    • 33847300613 scopus 로고    scopus 로고
    • Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple
    • Nicolaï BM, Theron KI, Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemom. Intell. Lab. Syst. 2007; 85: 243-252.
    • (2007) Chemom. Intell. Lab. Syst. , vol.85 , pp. 243-252
    • Nicolaï, B.M.1    Theron, K.I.2    Lammertyn, J.3
  • 8
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its applications in chemistry
    • Li H, Liang Y, Xu Q. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 2009; 95: 188-198.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , pp. 188-198
    • Li, H.1    Liang, Y.2    Xu, Q.3
  • 9
    • 61349156692 scopus 로고    scopus 로고
    • Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation
    • Devos O, Ruckebusch C, Durand A, Duponchel L, Huvenne JP. Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst. 2009; 96: 27-33.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 27-33
    • Devos, O.1    Ruckebusch, C.2    Durand, A.3    Duponchel, L.4    Huvenne, J.P.5
  • 10
    • 79955653069 scopus 로고    scopus 로고
    • Exploring nonlinear relationships in chemical data using kernel based methods
    • Cao DS, Liang YZ, Xu QS, Hu QN, Zhang LX. Exploring nonlinear relationships in chemical data using kernel based methods. Chemom. Intell. Lab. Syst. 2011; 107: 106-115.
    • (2011) Chemom. Intell. Lab. Syst. , vol.107 , pp. 106-115
    • Cao, D.S.1    Liang, Y.Z.2    Xu, Q.S.3    Hu, Q.N.4    Zhang, L.X.5
  • 11
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic regression
    • Chen T, Morris J, Martin E. Gaussian process regression for multivariate spectroscopic regression. Chemom. Intell. Lab. Syst. 2007; 87: 59-71.
    • (2007) Chemom. Intell. Lab. Syst. , vol.87 , pp. 59-71
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 12
    • 84870784748 scopus 로고    scopus 로고
    • Combination of activation functions in extreme learning machines for multivariate calibration
    • Peng J, Li L, Tang YY. Combination of activation functions in extreme learning machines for multivariate calibration. Chemom. Intell. Lab. Syst. 2013; 120: 53-78.
    • (2013) Chemom. Intell. Lab. Syst. , vol.120 , pp. 53-78
    • Peng, J.1    Li, L.2    Tang, Y.Y.3
  • 14
    • 77954625423 scopus 로고    scopus 로고
    • Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data
    • Pasolli E, Melgani F, Blanzieri E. Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Geosci. Remote Sens. Letters 2010; 7: 464-468.
    • (2010) IEEE Geosci. Remote Sens. Letters , vol.7 , pp. 464-468
    • Pasolli, E.1    Melgani, F.2    Blanzieri, E.3
  • 15
    • 84863009799 scopus 로고    scopus 로고
    • Improved estimation of water chlorophyll concentration with semisupervised Gaussian process regression
    • Bazi Y, Melgani F, Alajlan N. Improved estimation of water chlorophyll concentration with semisupervised Gaussian process regression. IEEE Trans. Geosci. Remote Sens. 2012; 50: 988-997.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 988-997
    • Bazi, Y.1    Melgani, F.2    Alajlan, N.3
  • 17
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward neural networks with random hidden nodes
    • Huang GB, Chen L, Siew SK. Universal approximation using incremental constructive feedforward neural networks with random hidden nodes. IEEE Trans. Neural Netw. 2006; 17: 879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, S.K.3
  • 18
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Chen L. Extreme learning machine: theory and applications. Neurocomputing 2006; 70: 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Chen, L.2
  • 21
    • 33847276241 scopus 로고    scopus 로고
    • Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression
    • Zhou YP, Jiang JH, Wu HL, Shen GL, Yu RQ, Ozaki Y. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression. J. Chemom. 2006; 20: 13-21.
    • (2006) J. Chemom. , vol.20 , pp. 13-21
    • Zhou, Y.P.1    Jiang, J.H.2    Wu, H.L.3    Shen, G.L.4    Yu, R.Q.5    Ozaki, Y.6
  • 22
    • 34249307438 scopus 로고    scopus 로고
    • Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra
    • Shinzawa H, Jiang JH, Ritthiruangdej P, Ozaki Y. Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemom. 2006; 20: 436-444.
    • (2006) J. Chemom. , vol.20 , pp. 436-444
    • Shinzawa, H.1    Jiang, J.H.2    Ritthiruangdej, P.3    Ozaki, Y.4
  • 23
  • 24
    • 77952548488 scopus 로고    scopus 로고
    • An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
    • Shao X, Bian X, Cai W. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Anal. Chim. Acta 2010; 666: 32-37.
    • (2010) Anal. Chim. Acta , vol.666 , pp. 32-37
    • Shao, X.1    Bian, X.2    Cai, W.3
  • 25
    • 78650945964 scopus 로고    scopus 로고
    • Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
    • Niu D, Wang F, Zhang L, He D, Jia M. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 2011; 105: 125-130.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 125-130
    • Niu, D.1    Wang, F.2    Zhang, L.3    He, D.4    Jia, M.5
  • 27
    • 79952003251 scopus 로고    scopus 로고
    • Differential evolution: a survey of state-of-the-art
    • Das S, Suganthan PN. Differential evolution: a survey of state-of-the-art. IEEE Trans. Evol. Comput. 2011; 15: 4-31.
    • (2011) IEEE Trans. Evol. Comput. , vol.15 , pp. 4-31
    • Das, S.1    Suganthan, P.N.2
  • 29
    • 0023855863 scopus 로고
    • On ordered weighted averaging aggregation in multicriteria decision making
    • Yager RR. On ordered weighted averaging aggregation in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 1988; 18: 183-190.
    • (1988) IEEE Trans. Syst. Man Cybern. , vol.18 , pp. 183-190
    • Yager, R.R.1
  • 30
    • 85153993436 scopus 로고    scopus 로고
    • A two stage regression approach for spectroscopic data analysis
    • Douak F, Benoudjit N, Melgani F. A two stage regression approach for spectroscopic data analysis. Chemom. Intell. Lab. Syst. 2009; 96: 27-33.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 27-33
    • Douak, F.1    Benoudjit, N.2    Melgani, F.3
  • 31
  • 33
    • 84856268436 scopus 로고    scopus 로고
    • On the stress function-based OWA determination method with optimization criteria
    • Liu X, Yu S. On the stress function-based OWA determination method with optimization criteria. IEEE Trans. Syst. Man. Cybern. Part B: Cybernetics 2012; 42: 246-257.
    • (2012) IEEE Trans. Syst. Man. Cybern. Part B: Cybernetics , vol.42 , pp. 246-257
    • Liu, X.1    Yu, S.2
  • 34
    • 84867365708 scopus 로고    scopus 로고
    • Programming-based OWA operators with weight quadratic objective function
    • Ahn BS. Programming-based OWA operators with weight quadratic objective function. IEEE Trans. Fuzzy Syst. 2012; 20: 986-992.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , pp. 986-992
    • Ahn, B.S.1
  • 35
    • 0038220041 scopus 로고    scopus 로고
    • On obtaining minimal variability OWA operator weights
    • Fuller R, Majlender P. On obtaining minimal variability OWA operator weights. Fuzzy Set. Syst. 2003; 136: 203-215.
    • (2003) Fuzzy Set. Syst. , vol.136 , pp. 203-215
    • Fuller, R.1    Majlender, P.2
  • 36
    • 85153981528 scopus 로고    scopus 로고
    • Datasets provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, meurens@bnut.ucl.ac.be. Wine and orange juice datasets available from:
    • Datasets provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, meurens@bnut.ucl.ac.be. Wine and orange juice datasets available from: http://www.ucl.ac.be/mlg/.
  • 37
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
    • Rossi F, Lendasse A, Francois D, Wertz V, Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemom. Intell. Lab. Syst. 2006; 80: 215-226.
    • (2006) Chemom. Intell. Lab. Syst. , vol.80 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    Francois, D.3    Wertz, V.4    Verleysen, M.5
  • 38
    • 39749131593 scopus 로고    scopus 로고
    • A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis
    • Krier C, Rossi F, François D, Verleysen M. A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis. Chemom. Intell. Lab. Syst. 2008; 91: 43-53.
    • (2008) Chemom. Intell. Lab. Syst. , vol.91 , pp. 43-53
    • Krier, C.1    Rossi, F.2    François, D.3    Verleysen, M.4
  • 39
    • 85153974833 scopus 로고    scopus 로고
    • Tecator meat sample dataset. Available from:
    • Tecator meat sample dataset. Available from: http://lib.stat.cmu.edu/datasets/tecator.
  • 40
    • 85153994428 scopus 로고    scopus 로고
    • Gaussian Process software. [Online]. Available:
    • Rasmussen C.E, Williams K.I. Gaussian Process software. [Online]. Available: http://www.gaussianprocess.org/gpml/code/matlab/doc/.
    • Rasmussen, C.E.1    Williams, K.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.