-
1
-
-
0000249159
-
On-line monitoring of powder blend homogeneity by near-infrared spectroscopy
-
Sekulic S, Ward HW, Brannegan D, Stanley E, Evans C, Sciavolino S, Hailey P, Aldridge P. On-line monitoring of powder blend homogeneity by near-infrared spectroscopy. Anal. Chem. 1996; 68: 509-513.
-
(1996)
Anal. Chem.
, vol.68
, pp. 509-513
-
-
Sekulic, S.1
Ward, H.W.2
Brannegan, D.3
Stanley, E.4
Evans, C.5
Sciavolino, S.6
Hailey, P.7
Aldridge, P.8
-
2
-
-
0033056282
-
Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy
-
Blanco M, Coello J, Eustaquio A, Iturriaga H, Maspoch S. Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy. Anal. Chim. Acta 1999; 392(2-3): 237-246.
-
(1999)
Anal. Chim. Acta
, vol.392
, Issue.2-3
, pp. 237-246
-
-
Blanco, M.1
Coello, J.2
Eustaquio, A.3
Iturriaga, H.4
Maspoch, S.5
-
3
-
-
0000213005
-
Potential of near-infrared Fourier transform Raman spectroscopy in food analysis
-
Ozaki Y, Cho R, Ikegaya K, Muraishi S, Kawauchi K. Potential of near-infrared Fourier transform Raman spectroscopy in food analysis. Appl. Spectrosc. 1992; 46: 1503-1507.
-
(1992)
Appl. Spectrosc.
, vol.46
, pp. 1503-1507
-
-
Ozaki, Y.1
Cho, R.2
Ikegaya, K.3
Muraishi, S.4
Kawauchi, K.5
-
4
-
-
0030881258
-
Determination of finishing oils in acrylic fibers by near-infrared reflectance spectroscopy
-
Blanco M, Coello J, Garcia Fraga JM, Iturriaga H, Maspoch S, Pagès J. Determination of finishing oils in acrylic fibers by near-infrared reflectance spectroscopy. Analyst 1999; 122; 777-781.
-
(1999)
Analyst
, vol.122
, pp. 777-781
-
-
Blanco, M.1
Coello, J.2
Garcia Fraga, J.M.3
Iturriaga, H.4
Maspoch, S.5
Pagès, J.6
-
6
-
-
0042031251
-
Using artificial neural networks for process and system modeling
-
Verikas A, Bacauskiene M. Using artificial neural networks for process and system modeling. Chemom. Intell. Lab. Syst. 2003; 67: 187-191.
-
(2003)
Chemom. Intell. Lab. Syst.
, vol.67
, pp. 187-191
-
-
Verikas, A.1
Bacauskiene, M.2
-
7
-
-
33847300613
-
Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple
-
Nicolaï BM, Theron KI, Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemom. Intell. Lab. Syst. 2007; 85: 243-252.
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.85
, pp. 243-252
-
-
Nicolaï, B.M.1
Theron, K.I.2
Lammertyn, J.3
-
8
-
-
58149203252
-
Support vector machines and its applications in chemistry
-
Li H, Liang Y, Xu Q. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 2009; 95: 188-198.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.95
, pp. 188-198
-
-
Li, H.1
Liang, Y.2
Xu, Q.3
-
9
-
-
61349156692
-
Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation
-
Devos O, Ruckebusch C, Durand A, Duponchel L, Huvenne JP. Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst. 2009; 96: 27-33.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.96
, pp. 27-33
-
-
Devos, O.1
Ruckebusch, C.2
Durand, A.3
Duponchel, L.4
Huvenne, J.P.5
-
10
-
-
79955653069
-
Exploring nonlinear relationships in chemical data using kernel based methods
-
Cao DS, Liang YZ, Xu QS, Hu QN, Zhang LX. Exploring nonlinear relationships in chemical data using kernel based methods. Chemom. Intell. Lab. Syst. 2011; 107: 106-115.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.107
, pp. 106-115
-
-
Cao, D.S.1
Liang, Y.Z.2
Xu, Q.S.3
Hu, Q.N.4
Zhang, L.X.5
-
11
-
-
34247508683
-
Gaussian process regression for multivariate spectroscopic regression
-
Chen T, Morris J, Martin E. Gaussian process regression for multivariate spectroscopic regression. Chemom. Intell. Lab. Syst. 2007; 87: 59-71.
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.87
, pp. 59-71
-
-
Chen, T.1
Morris, J.2
Martin, E.3
-
12
-
-
84870784748
-
Combination of activation functions in extreme learning machines for multivariate calibration
-
Peng J, Li L, Tang YY. Combination of activation functions in extreme learning machines for multivariate calibration. Chemom. Intell. Lab. Syst. 2013; 120: 53-78.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.120
, pp. 53-78
-
-
Peng, J.1
Li, L.2
Tang, Y.Y.3
-
14
-
-
77954625423
-
Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data
-
Pasolli E, Melgani F, Blanzieri E. Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Geosci. Remote Sens. Letters 2010; 7: 464-468.
-
(2010)
IEEE Geosci. Remote Sens. Letters
, vol.7
, pp. 464-468
-
-
Pasolli, E.1
Melgani, F.2
Blanzieri, E.3
-
15
-
-
84863009799
-
Improved estimation of water chlorophyll concentration with semisupervised Gaussian process regression
-
Bazi Y, Melgani F, Alajlan N. Improved estimation of water chlorophyll concentration with semisupervised Gaussian process regression. IEEE Trans. Geosci. Remote Sens. 2012; 50: 988-997.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, pp. 988-997
-
-
Bazi, Y.1
Melgani, F.2
Alajlan, N.3
-
17
-
-
33745918399
-
Universal approximation using incremental constructive feedforward neural networks with random hidden nodes
-
Huang GB, Chen L, Siew SK. Universal approximation using incremental constructive feedforward neural networks with random hidden nodes. IEEE Trans. Neural Netw. 2006; 17: 879-892.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, pp. 879-892
-
-
Huang, G.B.1
Chen, L.2
Siew, S.K.3
-
18
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang GB, Chen L. Extreme learning machine: theory and applications. Neurocomputing 2006; 70: 489-501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.B.1
Chen, L.2
-
21
-
-
33847276241
-
Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression
-
Zhou YP, Jiang JH, Wu HL, Shen GL, Yu RQ, Ozaki Y. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression. J. Chemom. 2006; 20: 13-21.
-
(2006)
J. Chemom.
, vol.20
, pp. 13-21
-
-
Zhou, Y.P.1
Jiang, J.H.2
Wu, H.L.3
Shen, G.L.4
Yu, R.Q.5
Ozaki, Y.6
-
22
-
-
34249307438
-
Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra
-
Shinzawa H, Jiang JH, Ritthiruangdej P, Ozaki Y. Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemom. 2006; 20: 436-444.
-
(2006)
J. Chemom.
, vol.20
, pp. 436-444
-
-
Shinzawa, H.1
Jiang, J.H.2
Ritthiruangdej, P.3
Ozaki, Y.4
-
24
-
-
77952548488
-
An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
-
Shao X, Bian X, Cai W. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Anal. Chim. Acta 2010; 666: 32-37.
-
(2010)
Anal. Chim. Acta
, vol.666
, pp. 32-37
-
-
Shao, X.1
Bian, X.2
Cai, W.3
-
25
-
-
78650945964
-
Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
-
Niu D, Wang F, Zhang L, He D, Jia M. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 2011; 105: 125-130.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.105
, pp. 125-130
-
-
Niu, D.1
Wang, F.2
Zhang, L.3
He, D.4
Jia, M.5
-
27
-
-
79952003251
-
Differential evolution: a survey of state-of-the-art
-
Das S, Suganthan PN. Differential evolution: a survey of state-of-the-art. IEEE Trans. Evol. Comput. 2011; 15: 4-31.
-
(2011)
IEEE Trans. Evol. Comput.
, vol.15
, pp. 4-31
-
-
Das, S.1
Suganthan, P.N.2
-
29
-
-
0023855863
-
On ordered weighted averaging aggregation in multicriteria decision making
-
Yager RR. On ordered weighted averaging aggregation in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 1988; 18: 183-190.
-
(1988)
IEEE Trans. Syst. Man Cybern.
, vol.18
, pp. 183-190
-
-
Yager, R.R.1
-
30
-
-
85153993436
-
A two stage regression approach for spectroscopic data analysis
-
Douak F, Benoudjit N, Melgani F. A two stage regression approach for spectroscopic data analysis. Chemom. Intell. Lab. Syst. 2009; 96: 27-33.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.96
, pp. 27-33
-
-
Douak, F.1
Benoudjit, N.2
Melgani, F.3
-
33
-
-
84856268436
-
On the stress function-based OWA determination method with optimization criteria
-
Liu X, Yu S. On the stress function-based OWA determination method with optimization criteria. IEEE Trans. Syst. Man. Cybern. Part B: Cybernetics 2012; 42: 246-257.
-
(2012)
IEEE Trans. Syst. Man. Cybern. Part B: Cybernetics
, vol.42
, pp. 246-257
-
-
Liu, X.1
Yu, S.2
-
34
-
-
84867365708
-
Programming-based OWA operators with weight quadratic objective function
-
Ahn BS. Programming-based OWA operators with weight quadratic objective function. IEEE Trans. Fuzzy Syst. 2012; 20: 986-992.
-
(2012)
IEEE Trans. Fuzzy Syst.
, vol.20
, pp. 986-992
-
-
Ahn, B.S.1
-
35
-
-
0038220041
-
On obtaining minimal variability OWA operator weights
-
Fuller R, Majlender P. On obtaining minimal variability OWA operator weights. Fuzzy Set. Syst. 2003; 136: 203-215.
-
(2003)
Fuzzy Set. Syst.
, vol.136
, pp. 203-215
-
-
Fuller, R.1
Majlender, P.2
-
36
-
-
85153981528
-
-
Datasets provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, meurens@bnut.ucl.ac.be. Wine and orange juice datasets available from:
-
Datasets provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, meurens@bnut.ucl.ac.be. Wine and orange juice datasets available from: http://www.ucl.ac.be/mlg/.
-
-
-
-
37
-
-
32944462016
-
Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
-
Rossi F, Lendasse A, Francois D, Wertz V, Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemom. Intell. Lab. Syst. 2006; 80: 215-226.
-
(2006)
Chemom. Intell. Lab. Syst.
, vol.80
, pp. 215-226
-
-
Rossi, F.1
Lendasse, A.2
Francois, D.3
Wertz, V.4
Verleysen, M.5
-
38
-
-
39749131593
-
A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis
-
Krier C, Rossi F, François D, Verleysen M. A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis. Chemom. Intell. Lab. Syst. 2008; 91: 43-53.
-
(2008)
Chemom. Intell. Lab. Syst.
, vol.91
, pp. 43-53
-
-
Krier, C.1
Rossi, F.2
François, D.3
Verleysen, M.4
-
39
-
-
85153974833
-
-
Tecator meat sample dataset. Available from:
-
Tecator meat sample dataset. Available from: http://lib.stat.cmu.edu/datasets/tecator.
-
-
-
-
40
-
-
85153994428
-
-
Gaussian Process software. [Online]. Available:
-
Rasmussen C.E, Williams K.I. Gaussian Process software. [Online]. Available: http://www.gaussianprocess.org/gpml/code/matlab/doc/.
-
-
-
Rasmussen, C.E.1
Williams, K.I.2
|