메뉴 건너뛰기




Volumn , Issue , 2008, Pages 153-169

Fuzzy Clustering as a Data-Driven Development Environment for Information Granules

Author keywords

alternating cluster estimation (ACE) framework; Cluster validity analysis; Fuzzy clustering essentials; Fuzzy set information granulation framework; Granular computing (GrC) and general computation theory; Granular computing and data algorithmic abstraction; Information granule fuzzy clustering formation; Possibilistic C means clustering algorithm

Indexed keywords


EID: 84889477542     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470724163.ch7     Document Type: Chapter
Times cited : (2)

References (69)
  • 2
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • L. Zadeh. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90 (1997) 111-127.
    • (1997) Fuzzy Sets Syst , vol.90 , pp. 111-127
    • Zadeh, L.1
  • 3
    • 0003123776 scopus 로고    scopus 로고
    • Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems
    • L. Zadeh. Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Comput. 2(1) (1998) 23-25.
    • (1998) Soft Comput , vol.2 , Issue.1 , pp. 23-25
    • Zadeh, L.1
  • 4
    • 0033363463 scopus 로고    scopus 로고
    • Fuzzy computing for data mining
    • K. Hirota and W. Pedrycz. Fuzzy computing for data mining. Proc. IEEE 87(9) (1999) 1575-1600.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1575-1600
    • Hirota, K.1    Pedrycz, W.2
  • 7
    • 0032122726 scopus 로고    scopus 로고
    • Conditional fuzzy clustering in the design of radial basis function neural network
    • W. Pedrycz. Conditional fuzzy clustering in the design of radial basis function neural network. IEEE Trans. Neural Netw. 9 (1998) 601-612.
    • (1998) IEEE Trans. Neural Netw , vol.9 , pp. 601-612
    • Pedrycz, W.1
  • 8
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: a review
    • A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM Comput. Surv. 31(3) (1999) 264-323.
    • (1999) ACM Comput. Surv , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.1    Murty, M.2    Flynn, P.3
  • 9
    • 16444383160 scopus 로고    scopus 로고
    • II. Survey of clustering algorithms
    • R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3) (2005) 645-678.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 10
    • 0002663098 scopus 로고
    • Slink: an optimally efficient algorithm for a complete link method
    • R. Sibson. Slink: an optimally efficient algorithm for a complete link method. Comput. J. 16 (1973) 30-34.
    • (1973) Comput. J. , vol.16 , pp. 30-34
    • Sibson, R.1
  • 11
    • 0001765146 scopus 로고
    • An efficient algorithm for a complete link method
    • D. Defays. An efficient algorithm for a complete link method. Comput. J. 20 (1977) 364-366.
    • (1977) Comput. J. , vol.20 , pp. 364-366
    • Defays, D.1
  • 12
    • 0022906994 scopus 로고
    • Implementing agglomerative hierarchic clustering algorithms for use in document retrieval
    • E. Voorhees. Implementing agglomerative hierarchic clustering algorithms for use in document retrieval. Inf. Process. Manage. 22(6) (1986) 465-176.
    • (1986) Inf. Process. Manage , vol.22 , Issue.6 , pp. 465-176
    • Voorhees, E.1
  • 13
    • 0004208520 scopus 로고
    • Introduction to Combinatorial Mathematics
    • McGraw-Hill, New York
    • G. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, New York, 1968.
    • (1968)
    • Liu, G.1
  • 14
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: efficiency vs. interpretability of classifications
    • E. Forgy. Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21 (1965) 768-780.
    • (1965) Biometrics , vol.21 , pp. 768-780
    • Forgy, E.1
  • 15
    • 0001457509 scopus 로고
    • Some Methods for Classification and Analysis of Multivariate Observations
    • In:, University of California Press, Berkeley
    • J. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California Press, Berkeley, 1967, pp. 281-297.
    • (1967) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 16
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L. Zadeh. Fuzzy sets. Inf. Control 8 (1965) 338-353.
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.1
  • 17
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E. Ruspini. A new approach to clustering. Inf. Control 15 (1969) 22-32.
    • (1969) Inf. Control , vol.15 , pp. 22-32
    • Ruspini, E.1
  • 18
    • 0004008854 scopus 로고
    • Pattern Recognition with Fuzzy Objective Function Algorithms
    • Plenum Press, New York
    • J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981.
    • (1981)
    • Bezdek, J.1
  • 19
    • 35248878870 scopus 로고    scopus 로고
    • What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier
    • F. Klawonn and F. Hoppner. What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier. Lect. Notes Comput. Sei. 2810 (2003) 254-264.
    • (2003) Lect. Notes Comput. Sei , vol.2810 , pp. 254-264
    • Klawonn, F.1    Hoppner, F.2
  • 20
    • 0034298140 scopus 로고    scopus 로고
    • Generalized fuzzy c-means clustering strategies using L_inf_p_/inf_ norm distances
    • R. Hathaway, J. Bezdek, and Y. Hu. Generalized fuzzy c-means clustering strategies using L_inf_p_/inf_ norm distances. IEEE Trans. Fuzzy Syst. 8(5) (2000) 576-582.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.5 , pp. 576-582
    • Hathaway, R.1    Bezdek, J.2    Hu, Y.3
  • 23
    • 0030214781 scopus 로고    scopus 로고
    • The possibilistic C-means algorithm: insights and recommendations
    • R. Krishnapuram and J. Keller. The possibilistic C-means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4 (1996) 385-393.
    • (1996) IEEE Trans. Fuzzy Syst , vol.4 , pp. 385-393
    • Krishnapuram, R.1    Keller, J.2
  • 24
    • 84889352654 scopus 로고    scopus 로고
    • Advances in Fuzzy Clustering and Its Applications
    • (eds.), Wiley, New York
    • J. Valente de Oliveira and W. Pedrycz (eds.) . Advances in Fuzzy Clustering and Its Applications, Wiley, New York, 2007.
    • (2007)
    • Valente De Oliveira, J.1    Pedrycz, W.2
  • 27
    • 0000159475 scopus 로고
    • Detection and characterization of cluster substructure, I: Linear structure: fuzzy c-lines
    • J. Bezdek, C. Coray, R. Gunderson, and J. Watson. Detection and characterization of cluster substructure, I: Linear structure: fuzzy c-lines. J. Appl. Math. 40(2) (1981) 339-357.
    • (1981) J. Appl. Math , vol.40 , Issue.2 , pp. 339-357
    • Bezdek, J.1    Coray, C.2    Gunderson, R.3    Watson, J.4
  • 28
    • 0000159475 scopus 로고
    • Detection and characterization of cluster substructure, II Fuzzy c-varieties and convex combinations thereof
    • J. Bezdek, C. Coray, R. Gunderson, and J. Watson. Detection and characterization of cluster substructure, II Fuzzy c-varieties and convex combinations thereof. J. Appl. Math. 40(2) (1981) 358-372.
    • (1981) J. Appl. Math , vol.40 , Issue.2 , pp. 358-372
    • Bezdek, J.1    Coray, C.2    Gunderson, R.3    Watson, J.4
  • 29
    • 84972811713 scopus 로고
    • Fuzzy shell clustering and application to circle detection in digital images
    • R. Dave. Fuzzy shell clustering and application to circle detection in digital images. Int. J. Gen. Syst. 16 (1990) 343-355.
    • (1990) Int. J. Gen. Syst. , vol.16 , pp. 343-355
    • Dave, R.1
  • 30
    • 0029245943 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation
    • R. Krisnapuram, H. Frigui, and O. Nasroui. Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Trans. Fuzzy Syst. 3(1) (1995) 29-60.
    • (1995) IEEE Trans. Fuzzy Syst , vol.3 , Issue.1 , pp. 29-60
    • Krisnapuram, R.1    Frigui, H.2    Nasroui, O.3
  • 31
    • 0031268101 scopus 로고    scopus 로고
    • Fuzzy shell clustering algorithms in image processing fuzzy c-rectangular and two rectangular shells
    • F. Hoppner. Fuzzy shell clustering algorithms in image processing fuzzy c-rectangular and two rectangular shells. IEEE Trans. Fuzzy Syst. 5 (1997) 599-613.
    • (1997) IEEE Trans. Fuzzy Syst , vol.5 , pp. 599-613
    • Hoppner, F.1
  • 32
    • 0027647031 scopus 로고
    • Switching regression models and fuzzy clustering
    • R. Hathaway and J. Bezdek. Switching regression models and fuzzy clustering. IEEE Trans. Fuzzy Syst. 1 (1993) 195-204.
    • (1993) IEEE Trans. Fuzzy Syst , vol.1 , pp. 195-204
    • Hathaway, R.1    Bezdek, J.2
  • 33
    • 0003630531 scopus 로고    scopus 로고
    • Fuzzy Cluster Analysis
    • John Wiley, Chichester, England
    • F. Hoppner, F. Klawonn, R. Krase, and T. Runkler. Fuzzy Cluster Analysis. John Wiley, Chichester, England, 1999.
    • (1999)
    • Hoppner, F.1    Klawonn, F.2    Krase, R.3    Runkler, T.4
  • 35
    • 0000586827 scopus 로고
    • Characterization and detection of noise in clustering
    • R. Dave. Characterization and detection of noise in clustering. Pattern Recognit. Lett. 12 (1991) 657-664.
    • (1991) Pattern Recognit. Lett. , vol.12 , pp. 657-664
    • Dave, R.1
  • 36
    • 0012075786 scopus 로고    scopus 로고
    • On generalising the noise clustering algorithms
    • In:, Prague, Czech Republic, June 25-29
    • R. Dave and S. Sen. On generalising the noise clustering algorithms. In: Proceedings of the 7th IFSA World Congress, IFSA'97, Prague, Czech Republic, June 25-29. 1997, pp. 205-210.
    • (1997) Proceedings of the 7th IFSA World Congress, IFSA'97 , pp. 205-210
    • Dave, R.1    Sen, S.2
  • 37
    • 0032595185 scopus 로고    scopus 로고
    • Alternating cluster estimation: A new tool for clustering and function approximation
    • T. Runkler and J. Bezdek. Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. Fuzzy Syst. 7 (1999) 377-393.
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , pp. 377-393
    • Runkler, T.1    Bezdek, J.2
  • 39
    • 0031675486 scopus 로고    scopus 로고
    • Comparative study of a genetic fuzzy c-means algorithm and a validity guided fuzzy c-means algorithm for locating clusters in noisy data
    • In:, Anchorage, USA, May 4-9
    • M. Egan, M. Krishnamoorthy, and K. Rajan. Comparative study of a genetic fuzzy c-means algorithm and a validity guided fuzzy c-means algorithm for locating clusters in noisy data. In: Proceedings of the International Conference on Evolutionary Computation, 1998, Anchorage, USA, May 4-9, pp. 440-445.
    • (1998) Proceedings of the International Conference on Evolutionary Computation , pp. 440-445
    • Egan, M.1    Krishnamoorthy, M.2    Rajan, K.3
  • 40
    • 0032660692 scopus 로고    scopus 로고
    • Clustering with a genetically optimized approach
    • L. Hall, B. Ozyurt, and J. Bezdek. Clustering with a genetically optimized approach. IEEE Trans. Evol. Comput. 3 (2) (1999) 103-112.
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , Issue.2 , pp. 103-112
    • Hall, L.1    Ozyurt, B.2    Bezdek, J.3
  • 41
    • 0032188320 scopus 로고    scopus 로고
    • Fuzzy clustering with evolutionary algorithms
    • F. Klawonn and A. Keller. Fuzzy clustering with evolutionary algorithms. Int. J. Intell. Syst. 13(10/11) (1998) 975-991.
    • (1998) Int. J. Intell. Syst. , vol.13 , Issue.10-11 , pp. 975-991
    • Klawonn, F.1    Keller, A.2
  • 46
    • 30544448155 scopus 로고    scopus 로고
    • Ant colony optimization of clustering models
    • T. Runkler. Ant colony optimization of clustering models. Int. J. Intell. Syst. 20(12) (2005) 1233-1261.
    • (2005) Int. J. Intell. Syst. , vol.20 , Issue.12 , pp. 1233-1261
    • Runkler, T.1
  • 48
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • C. Fralley and A. Raftery. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41(8) (1998) 578-588.
    • (1998) Comput. J. , vol.41 , Issue.8 , pp. 578-588
    • Fralley, C.1    Raftery, A.2
  • 50
    • 0036937614 scopus 로고    scopus 로고
    • Performance evaluation of some clustering algorithms and validity indices
    • U. Maulik and S. Bandyopadhyay. Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12) (2002) 1650-1654.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.12 , pp. 1650-1654
    • Maulik, U.1    Bandyopadhyay, S.2
  • 51
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. Milligan and C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2) (1985) 159-179.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.1    Cooper, C.2
  • 52
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • N. Pal and J. Bezdek. On cluster validity for the fuzzy c-means model. IEEE Tran. Fuzzy Syst. 3(3) (1995) 370-379.
    • (1995) IEEE Tran. Fuzzy Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.1    Bezdek, J.2
  • 54
    • 0035676057 scopus 로고    scopus 로고
    • On clustering validation techniques
    • Kluwer Publishers, Dordrecht
    • M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques. J. Intell. Inf. Syst. Kluwer Publishers, Dordrecht, 17(2/3) (2001) 107-145.
    • (2001) J. Intell. Inf. Syst. , vol.17 , Issue.2-3 , pp. 107-145
    • Halkidi, M.1    Batistakis, Y.2    Vazirgiannis, M.3
  • 55
    • 0031192257 scopus 로고    scopus 로고
    • Clustering by competitive agglomeration
    • H. Frigui and R. Krishnapuram. Clustering by competitive agglomeration, Pattern Recognit. 30(7) (1997) 1109-1119.
    • (1997) Pattern Recognit , vol.30 , Issue.7 , pp. 1109-1119
    • Frigui, H.1    Krishnapuram, R.2
  • 56
    • 0032650370 scopus 로고    scopus 로고
    • A robust competitive clustering algorithm with applications in computer vision
    • H. Frigui and R. Krishnapuram. A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 21(5) (1999) 450-465.
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , Issue.5 , pp. 450-465
    • Frigui, H.1    Krishnapuram, R.2
  • 58
    • 0033280284 scopus 로고    scopus 로고
    • Hierarchical unsupervised fuzzy clustering
    • A. Geva. Hierarchical unsupervised fuzzy clustering. IEEE Trans. Fuzzy Syst. 7(6) (1999) 723-733.
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.6 , pp. 723-733
    • Geva, A.1
  • 59
    • 8844278616 scopus 로고    scopus 로고
    • Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification
    • U. Maulik and S. Bandyopadhyay. Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. Geosci. Remote Sens. 41(5) (2003) 1075-1081.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.5 , pp. 1075-1081
    • Maulik, U.1    Bandyopadhyay, S.2
  • 60
    • 0015558134 scopus 로고
    • Outline of a new approach to the analysis of complex systems and decision processes
    • SMC-3
    • L. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-3(1) (1973) 28-14.
    • (1973) IEEE Trans. Syst. Man Cybern , pp. 28-14
    • Zadeh, L.1
  • 61
    • 0030142764 scopus 로고    scopus 로고
    • Fuzzy logic = computing with words
    • L. Zadeh. Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2) (1996) 103-111.
    • (1996) IEEE Trans. Fuzzy Syst. , vol.4 , Issue.2 , pp. 103-111
    • Zadeh, L.1
  • 62
    • 0016458950 scopus 로고
    • The concept of linguistic variable and its application to approximate reasoning
    • (part I) , 301-357 (part II) .
    • L. Zadeh. The concept of linguistic variable and its application to approximate reasoning. Inf. Sei. 8 (1975) 199-249 (part I) , 301-357 (part II) .
    • (1975) Inf. Sei. , vol.8 , pp. 199-249
    • Zadeh, L.1
  • 63
    • 0016631726 scopus 로고
    • The concept of linguistic variable and its application to approximate reasoning
    • (part III) .
    • L. Zadeh. The concept of linguistic variable and its application to approximate reasoning. Inf. Sei. 9 (1976) 43-80 (part III) .
    • (1976) Inf. Sei. , vol.9 , pp. 43-80
    • Zadeh, L.1
  • 65
    • 39749093168 scopus 로고
    • The magic number seven, plus or minus two: some limits on our capacity for processing information
    • G. Miller. The magic number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63 (1956) 81-97.
    • (1956) Psychol. Rev. , vol.63 , pp. 81-97
    • Miller, G.1
  • 66
    • 0035248416 scopus 로고    scopus 로고
    • Abstraction and specialization of information granules
    • W. Pedrycz and G. Vukovich. Abstraction and specialization of information granules. IEEE Trans. Syst. Man Cybern. Part B 31(1) (2001) 106-111.
    • (2001) IEEE Trans. Syst. Man Cybern. Part B , vol.31 , Issue.1 , pp. 106-111
    • Pedrycz, W.1    Vukovich, G.2
  • 68
    • 13844298042 scopus 로고    scopus 로고
    • A model of granular data: a design problem with the Tchebyshev FCM
    • A. Bargiela and W. Pedrycz. A model of granular data: a design problem with the Tchebyshev FCM. Soft Comput. 9 (2005) 155-163.
    • (2005) Soft Comput , vol.9 , pp. 155-163
    • Bargiela, A.1    Pedrycz, W.2
  • 69
    • 0037275090 scopus 로고    scopus 로고
    • Recursive information granulation: aggregation and interpretation issues
    • A. Bargiela, and W. Pedrycz. Recursive information granulation: aggregation and interpretation issues. IEEE Trans. Syst. Man Cybern. 33(1) (2003) 96-112.
    • (2003) IEEE Trans. Syst. Man Cybern , vol.33 , Issue.1 , pp. 96-112
    • Bargiela, A.1    Pedrycz, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.