메뉴 건너뛰기




Volumn 39, Issue 11, 2013, Pages 1957-1968

Simulation optimization: a review on theory and applications

Author keywords

Gradient based methods; Nested partitions method; Optimal computing budget allocation (OCBA); Ranking and selection; Simulation optimization

Indexed keywords

GRADIENT-BASED METHOD; NESTED PARTITIONS; OPTIMAL COMPUTING BUDGET ALLOCATION; RANKING AND SELECTION; SIMULATION OPTIMIZATION;

EID: 84889028161     PISSN: 02544156     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1004.2013.01957     Document Type: Review
Times cited : (50)

References (192)
  • 1
    • 4744362915 scopus 로고    scopus 로고
    • Simulation optimization: a comprehensive review on theory and applications
    • Tekin E, Sabuncuoglu I. Simulation optimization: a comprehensive review on theory and applications. IIE Transactions, 2004, 36(11): 1067-1081
    • (2004) IIE Transactions , vol.36 , Issue.11 , pp. 1067-1081
    • Tekin, E.1    Sabuncuoglu, I.2
  • 2
    • 0023572649 scopus 로고
    • Optimization in simulation: a survey of recent results
    • Piscataway, NJ: IEEE
    • Meketon M S. Optimization in simulation: a survey of recent results. In: Proceedings of the 1987 Winter Simulation Conference. Piscataway, NJ: IEEE, 1987. 58-67
    • (1987) Proceedings of the 1987 Winter Simulation Conference , pp. 58-67
    • Meketon, M.S.1
  • 5
    • 34249770616 scopus 로고
    • Optimization via simulation: a review
    • Fu M C. Optimization via simulation: a review. Annals of Operations Research, 1994, 53(1): 199-247
    • (1994) Annals of Operations Research , vol.53 , Issue.1 , pp. 199-247
    • Fu, M.C.1
  • 13
    • 0012260296 scopus 로고    scopus 로고
    • Optimization for simulation: theory vs. practice
    • Fu M C. Optimization for simulation: theory vs. practice. INFORMS Journal on Computing, 2002, 14(3): 192-215
    • (2002) INFORMS Journal on Computing , vol.14 , Issue.3 , pp. 192-215
    • Fu, M.C.1
  • 19
    • 0018544640 scopus 로고
    • A gradient technique for general buffer storage design in a production line
    • Ho Y C, Eyler M A, Chien T T. A gradient technique for general buffer storage design in a production line. International Journal of Production Research, 1979, 17(6): 557-580
    • (1979) International Journal of Production Research , vol.17 , Issue.6 , pp. 557-580
    • Ho, Y.C.1    Eyler, M.A.2    Chien, T.T.3
  • 21
    • 4744353988 scopus 로고
    • International Business Machine Research Report RC 11891, IBM Watson Research Labs, Yorktown Heights, NY
    • Heidelberger P. Limitations of Infinitesimal Perturbation Analysis. International Business Machine Research Report RC 11891, IBM Watson Research Labs, Yorktown Heights, NY, 1986
    • (1986) Limitations of Infinitesimal Perturbation Analysis
    • Heidelberger, P.1
  • 22
    • 0026223846 scopus 로고
    • Structural conditions for perturbation analysis derivative estimation: finite-time performance indices
    • Glasserman P. Structural conditions for perturbation analysis derivative estimation: finite-time performance indices. Operations Research, 1991, 39(5): 724-738
    • (1991) Operations Research , vol.39 , Issue.5 , pp. 724-738
    • Glasserman, P.1
  • 23
    • 0001577860 scopus 로고
    • On the convergence rates of IPA and FDC derivative estimators
    • L'Ecuyer P, Perron G. On the convergence rates of IPA and FDC derivative estimators. Operations Research, 1994, 42(4): 643-656
    • (1994) Operations Research , vol.42 , Issue.4 , pp. 643-656
    • L'Ecuyer, P.1    Perron, G.2
  • 24
  • 25
    • 0021599995 scopus 로고
    • Optimization of large multiclass (non-product-form) queueing networks using perturbation analysis
    • Ho Y C, Suri R, Cao X R, Diehl G W, Dille J W, Zazanis M. Optimization of large multiclass (non-product-form) queueing networks using perturbation analysis. Large Scale Systems, 1984, 7: 165-180
    • (1984) Large Scale Systems , vol.7 , pp. 165-180
    • Ho, Y.C.1    Suri, R.2    Cao, X.R.3    Diehl, G.W.4    Dille, J.W.5    Zazanis, M.6
  • 26
    • 0022111381 scopus 로고
    • On the perturbation analysis of discrete-event dynamic systems
    • Ho Y C. On the perturbation analysis of discrete-event dynamic systems. Journal of Optimization Theory and Applications, 1985, 46(4): 535-545
    • (1985) Journal of Optimization Theory and Applications , vol.46 , Issue.4 , pp. 535-545
    • Ho, Y.C.1
  • 27
    • 0025263436 scopus 로고
    • An infinitesimal perturbation analysis algorithm for a multiclass G/G/1 queue
    • Ho Y C, Hu J Q. An infinitesimal perturbation analysis algorithm for a multiclass G/G/1 queue. Operations Research Letters, 1990, 9(1): 35-44
    • (1990) Operations Research Letters , vol.9 , Issue.1 , pp. 35-44
    • Ho, Y.C.1    Hu, J.Q.2
  • 28
    • 0027593357 scopus 로고
    • Optimization of queues using an infinitesimal perturbation analysis-based stochastic algorithm with general update times
    • Chong E K P, Ramadge P J. Optimization of queues using an infinitesimal perturbation analysis-based stochastic algorithm with general update times. SIAM Journal on Control and Optimization, 1993, 31(3): 698-732
    • (1993) SIAM Journal on Control and Optimization , vol.31 , Issue.3 , pp. 698-732
    • Chong, E.K.P.1    Ramadge, P.J.2
  • 29
    • 0028444151 scopus 로고
    • Smoothed perturbation analysis derivative estimation for Markov chains
    • Fu M C, Hu J Q. Smoothed perturbation analysis derivative estimation for Markov chains. Operations Research Letters, 1994, 15(5): 241-251
    • (1994) Operations Research Letters , vol.15 , Issue.5 , pp. 241-251
    • Fu, M.C.1    Hu, J.Q.2
  • 30
    • 0001175694 scopus 로고
    • Sample path derivatives for (s, S) inventory systems
    • Fu M C. Sample path derivatives for (s, S) inventory systems. Operations Research, 1994, 42(2): 351-364
    • (1994) Operations Research , vol.42 , Issue.2 , pp. 351-364
    • Fu, M.C.1
  • 31
    • 0028377424 scopus 로고
    • Application of perturbation analysis to a class of periodic review (s, S) inventory systems
    • Bashyam S, Fu M C. Application of perturbation analysis to a class of periodic review (s, S) inventory systems. Naval Research Logistics (NRL), 1994, 41(1): 47-80
    • (1994) Naval Research Logistics (NRL) , vol.41 , Issue.1 , pp. 47-80
    • Bashyam, S.1    Fu, M.C.2
  • 32
    • 0032290624 scopus 로고    scopus 로고
    • Optimization of (s, S) inventory systems with random lead times and a service level constraint
    • Bashyam S, Fu M C. Optimization of (s, S) inventory systems with random lead times and a service level constraint. Management Science, 1998, 44(12-Part-2): S243-S256
    • (1998) Management Science , vol.44 , Issue.12 Part-2
    • Bashyam, S.1    Fu, M.C.2
  • 33
    • 0027845080 scopus 로고
    • Improving the design of stochastic production lines: an approach using perturbation analysis
    • Donohue K L, Spearman M L. Improving the design of stochastic production lines: an approach using perturbation analysis. International Journal of Production Research, 1993, 31(12): 2789-2806
    • (1993) International Journal of Production Research , vol.31 , Issue.12 , pp. 2789-2806
    • Donohue, K.L.1    Spearman, M.L.2
  • 34
    • 0028710489 scopus 로고
    • Using stochastic optimization to determine threshold values for the control of unreliable manufacturing systems
    • Yan H, Yin G, Lou S X C. Using stochastic optimization to determine threshold values for the control of unreliable manufacturing systems. Journal of Optimization Theory and Applications, 1994, 83(3): 511-539
    • (1994) Journal of Optimization Theory and Applications , vol.83 , Issue.3 , pp. 511-539
    • Yan, H.1    Yin, G.2    Lou, S.X.C.3
  • 35
    • 0028429830 scopus 로고
    • Infinitesimal perturbation analysis for second derivative estimation and design of manufacturing flow controllers
    • Liberopoulos G, Caramanis M. Infinitesimal perturbation analysis for second derivative estimation and design of manufacturing flow controllers. Journal of Optimization Theory and Applications, 1994, 81(2): 297-327
    • (1994) Journal of Optimization Theory and Applications , vol.81 , Issue.2 , pp. 297-327
    • Liberopoulos, G.1    Caramanis, M.2
  • 36
    • 0028518156 scopus 로고
    • On the design of a tandem queue with blocking: modeling, analysis, and gradient estimation
    • Cheng D W. On the design of a tandem queue with blocking: modeling, analysis, and gradient estimation. Naval Research Logistics (NRL), 1994, 41(6): 759-770
    • (1994) Naval Research Logistics (NRL) , vol.41 , Issue.6 , pp. 759-770
    • Cheng, D.W.1
  • 37
    • 0343653511 scopus 로고
    • Sensitivity analysis of a manufacturing work-station using perturbation analysis techniques
    • Heidergott B. Sensitivity analysis of a manufacturing work-station using perturbation analysis techniques. International Journal of Production Research, 1995, 33(3): 611-622
    • (1995) International Journal of Production Research , vol.33 , Issue.3 , pp. 611-622
    • Heidergott, B.1
  • 38
    • 0031250196 scopus 로고    scopus 로고
    • Using augmented infinitesimal perturbation analysis for capacity planning in intree ATM networks
    • Brooks C A, Varaiya P. Using augmented infinitesimal perturbation analysis for capacity planning in intree ATM networks. Discrete Event Dynamic Systems, 1997, 7(4): 377-390
    • (1997) Discrete Event Dynamic Systems , vol.7 , Issue.4 , pp. 377-390
    • Brooks, C.A.1    Varaiya, P.2
  • 39
    • 0033321393 scopus 로고    scopus 로고
    • Optimisation of a single-component maintenance system: a smoothed perturbation analysis approach
    • Heidergott B. Optimisation of a single-component maintenance system: a smoothed perturbation analysis approach. European Journal of Operational Research, 1999, 119(1): 181-190
    • (1999) European Journal of Operational Research , vol.119 , Issue.1 , pp. 181-190
    • Heidergott, B.1
  • 42
    • 0000519075 scopus 로고
    • Driving frequency selection for frequency domain simulation experiments
    • Jacobson S H, Buss A H, Schruben L W. Driving frequency selection for frequency domain simulation experiments. Operations Research, 1991, 39(6): 917-924
    • (1991) Operations Research , vol.39 , Issue.6 , pp. 917-924
    • Jacobson, S.H.1    Buss, A.H.2    Schruben, L.W.3
  • 43
    • 0031224366 scopus 로고    scopus 로고
    • A simulation clock-based solution to the frequency domain experiment indexing problem
    • Hazra M M, Morrice D J, Park S K. A simulation clock-based solution to the frequency domain experiment indexing problem. IIE Transactions, 1997, 29(9): 769-782
    • (1997) IIE Transactions , vol.29 , Issue.9 , pp. 769-782
    • Hazra, M.M.1    Morrice, D.J.2    Park, S.K.3
  • 44
    • 0023543886 scopus 로고
    • Likelihood ratio gradient estimation: an overview
    • Piscataway, NJ: IEEE
    • Glynn P W. Likelihood ratio gradient estimation: an overview. In: Proceedings of the 1987 Winter Simulation Conference. Piscataway, NJ: IEEE, 1987. 366-375
    • (1987) Proceedings of the 1987 Winter Simulation Conference , pp. 366-375
    • Glynn, P.W.1
  • 45
    • 84976859194 scopus 로고
    • Likelihood ratio gradient estimation for stochastic systems
    • Glynn P W. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 1990, 33(10): 75-84
    • (1990) Communications of the ACM , vol.33 , Issue.10 , pp. 75-84
    • Glynn, P.W.1
  • 46
    • 0024480453 scopus 로고
    • Sensitivity analysis and performance extrapolation for computer simulation models
    • Rubinstein R Y. Sensitivity analysis and performance extrapolation for computer simulation models. Operations Research, 1989, 37(1): 72-81
    • (1989) Operations Research , vol.37 , Issue.1 , pp. 72-81
    • Rubinstein, R.Y.1
  • 47
    • 0031139210 scopus 로고    scopus 로고
    • Optimization of computer simulation models with rare events
    • Rubinstein R Y. Optimization of computer simulation models with rare events. European Journal of Operational Research, 1997, 99(1): 89-112
    • (1997) European Journal of Operational Research , vol.99 , Issue.1 , pp. 89-112
    • Rubinstein, R.Y.1
  • 49
    • 0027927236 scopus 로고
    • Likelihood ratio sensitivity analysis for Markovian models of highly dependable systems
    • Nakayama M K, Goyal A, Glynn P W. Likelihood ratio sensitivity analysis for Markovian models of highly dependable systems. Operations Research, 1994, 42(1): 137-157
    • (1994) Operations Research , vol.42 , Issue.1 , pp. 137-157
    • Nakayama, M.K.1    Goyal, A.2    Glynn, P.W.3
  • 50
    • 0032180528 scopus 로고    scopus 로고
    • Likelihood ratio derivative estimation for finite-time performance measures in generalized semi-Markov processes
    • Nakayama M K, Shahabuddin P. Likelihood ratio derivative estimation for finite-time performance measures in generalized semi-Markov processes. Management Science, 1998, 44(10): 1426-1441
    • (1998) Management Science , vol.44 , Issue.10 , pp. 1426-1441
    • Nakayama, M.K.1    Shahabuddin, P.2
  • 51
    • 0030143339 scopus 로고    scopus 로고
    • Optimization of the transient and steady-state behavior of discrete event systems
    • Andradóttir, S. Optimization of the transient and steady-state behavior of discrete event systems. Management Science, 1996, 42(5): 717-737
    • (1996) Management Science , vol.42 , Issue.5 , pp. 717-737
    • Andradóttir, S.1
  • 52
    • 0029359066 scopus 로고
    • Comparison of gradient estimation techniques for queues with non-identical servers
    • Fu M C, Hu J Q, Nagi R. Comparison of gradient estimation techniques for queues with non-identical servers. Computers and Operations Research, 1995, 22(7): 715-729
    • (1995) Computers and Operations Research , vol.22 , Issue.7 , pp. 715-729
    • Fu, M.C.1    Hu, J.Q.2    Nagi, R.3
  • 53
    • 0032641361 scopus 로고    scopus 로고
    • Efficient design and sensitivity analysis of control charts using Monte Carlo simulation
    • Fu M C, Hu J Q. Efficient design and sensitivity analysis of control charts using Monte Carlo simulation. Management Science, 1999, 45(3): 395-413
    • (1999) Management Science , vol.45 , Issue.3 , pp. 395-413
    • Fu, M.C.1    Hu, J.Q.2
  • 54
  • 55
    • 56849096061 scopus 로고    scopus 로고
    • What you should know about simulation and derivatives
    • Fu M C. What you should know about simulation and derivatives. Naval Research Logistics (NRL), 2008, 55(8): 723-736
    • (2008) Naval Research Logistics (NRL) , vol.55 , Issue.8 , pp. 723-736
    • Fu, M.C.1
  • 57
    • 0001079593 scopus 로고
    • Stochastic estimation of the maximum of a regression function
    • Kiefer J, Wolfowitz J. Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 1952, 23(3): 462-466
    • (1952) The Annals of Mathematical Statistics , vol.23 , Issue.3 , pp. 462-466
    • Kiefer, J.1    Wolfowitz, J.2
  • 58
    • 0022882413 scopus 로고
    • Stochastic approximation for Monte Carlo optimization
    • Piscataway, NJ: IEEE
    • Glynn P W. Stochastic approximation for Monte Carlo optimization. In: Proceedings of the 1986 Winter Simulation Conference. Piscataway, NJ: IEEE, 1986. 356-365
    • (1986) Proceedings of the 1986 Winter Simulation Conference , pp. 356-365
    • Glynn, P.W.1
  • 59
    • 0030194207 scopus 로고    scopus 로고
    • On the convergence of linear stochastic approximation procedures
    • Kouritzin M A. On the convergence of linear stochastic approximation procedures. IEEE Transactions on Information Theory, 1996, 42(4): 1305-1309
    • (1996) IEEE Transactions on Information Theory , vol.42 , Issue.4 , pp. 1305-1309
    • Kouritzin, M.A.1
  • 60
    • 0030109229 scopus 로고    scopus 로고
    • An alternative proof for convergence of stochastic approximation algorithms
    • Kulkarni S R, Horn C S. An alternative proof for convergence of stochastic approximation algorithms. IEEE Transactions on Automatic Control, 1996, 41(3): 419-424
    • (1996) IEEE Transactions on Automatic Control , vol.41 , Issue.3 , pp. 419-424
    • Kulkarni, S.R.1    Horn, C.S.2
  • 61
    • 0032326765 scopus 로고    scopus 로고
    • Budget-dependent convergence rate of stochastic approximation
    • L'Ecuyer P, Yin G. Budget-dependent convergence rate of stochastic approximation. SIAM Journal on Optimization, 1998, 8(1): 217-247
    • (1998) SIAM Journal on Optimization , vol.8 , Issue.1 , pp. 217-247
    • L'Ecuyer, P.1    Yin, G.2
  • 62
    • 0000813026 scopus 로고
    • A stochastic approximation algorithm with varying bounds
    • Andradóttir S. A stochastic approximation algorithm with varying bounds. Operations Research, 1995, 43(6): 1037-1048
    • (1995) Operations Research , vol.43 , Issue.6 , pp. 1037-1048
    • Andradóttir, S.1
  • 63
    • 0033361754 scopus 로고    scopus 로고
    • Simulation-based optimization with stochastic approximation using common random numbers
    • Kleinman N L, Spall J C, Naiman D Q. Simulation-based optimization with stochastic approximation using common random numbers. Management Science, 1999, 45(11): 1570-1578
    • (1999) Management Science , vol.45 , Issue.11 , pp. 1570-1578
    • Kleinman, N.L.1    Spall, J.C.2    Naiman, D.Q.3
  • 64
    • 0024175607 scopus 로고
    • Using perturbation analysis for gradient estimation, averaging and updating in a stochastic approximation algorithm
    • San Diego, CA, USA
    • Fu M C, Ho Y C. Using perturbation analysis for gradient estimation, averaging and updating in a stochastic approximation algorithm. In: Proceedings of the 1988 Winter Simulation Conference. San Diego, CA, USA, 1988. 509-517
    • (1988) Proceedings of the 1988 Winter Simulation Conference , pp. 509-517
    • Fu, M.C.1    Ho, Y.C.2
  • 65
    • 0025417457 scopus 로고
    • Convergence of a stochastic approximation algorithm for the GI/G/1 queue using infinitesimal perturbation analysis
    • Fu M C. Convergence of a stochastic approximation algorithm for the GI/G/1 queue using infinitesimal perturbation analysis. Journal of Optimization Theory and Applications, 1990, 65(1): 149-160
    • (1990) Journal of Optimization Theory and Applications , vol.65 , Issue.1 , pp. 149-160
    • Fu, M.C.1
  • 66
    • 0028546691 scopus 로고
    • Stochastic optimization by simulation: convergence proofs for the GI/G/1 queue in steady-state
    • L'Ecuyer P, Glynn P W. Stochastic optimization by simulation: convergence proofs for the GI/G/1 queue in steady-state. Management Science, 1994, 40(11): 1562-1578
    • (1994) Management Science , vol.40 , Issue.11 , pp. 1562-1578
    • L'Ecuyer, P.1    Glynn, P.W.2
  • 67
    • 0028738448 scopus 로고
    • Optimizing discrete event systems with the simultaneous perturbation stochastic approximation algorithm
    • Lake Buena Vista, FL: IEEE
    • Hill S D, Fu M C. Optimizing discrete event systems with the simultaneous perturbation stochastic approximation algorithm. In: Proceedings of the 33rd IEEE Conference on Decision and Control. Lake Buena Vista, FL: IEEE, 1994. 2631-2632
    • (1994) Proceedings of the 33rd IEEE Conference on Decision and Control , pp. 2631-2632
    • Hill, S.D.1    Fu, M.C.2
  • 68
    • 0031097490 scopus 로고    scopus 로고
    • Optimization of discrete event systems via simultaneous perturbation stochastic approximation
    • Fu M C, Hill S D. Optimization of discrete event systems via simultaneous perturbation stochastic approximation. IIE Transactions, 1997, 29(3): 233-243
    • (1997) IIE Transactions , vol.29 , Issue.3 , pp. 233-243
    • Fu, M.C.1    Hill, S.D.2
  • 71
    • 0348149542 scopus 로고    scopus 로고
    • A scaled stochastic approximation algorithm
    • Andradöttir S. A scaled stochastic approximation algorithm. Management Science, 1996, 42(4): 475-498
    • (1996) Management Science , vol.42 , Issue.4 , pp. 475-498
    • Andradöttir, S.1
  • 72
    • 0031257238 scopus 로고    scopus 로고
    • Convergence rates of Perturbation-Analysis-Robbins-Monro-Single-Run algorithms for single server queues
    • Tang Q Y, Chen H F, Han Z J. Convergence rates of Perturbation-Analysis-Robbins-Monro-Single-Run algorithms for single server queues. IEEE Transactions on Automatic Control, 1997, 42(10): 1442-1447
    • (1997) IEEE Transactions on Automatic Control , vol.42 , Issue.10 , pp. 1442-1447
    • Tang, Q.Y.1    Chen, H.F.2    Han, Z.J.3
  • 73
    • 0033184357 scopus 로고    scopus 로고
    • Asymptotic efficiency of perturbation-analysis-based stochastic approximation with averaging
    • Tang Q Y, L'Ecuyer P, Chen H F. Asymptotic efficiency of perturbation-analysis-based stochastic approximation with averaging. SIAM Journal on Control and Optimization, 1999, 37(6): 1822-1847
    • (1999) SIAM Journal on Control and Optimization , vol.37 , Issue.6 , pp. 1822-1847
    • Tang, Q.Y.1    L'Ecuyer, P.2    Chen, H.F.3
  • 74
    • 0033885975 scopus 로고    scopus 로고
    • Central limit theorems for stochastic optimization algorithms using infinitesimal perturbation analysis
    • Tang Q Y, Chen H F. Central limit theorems for stochastic optimization algorithms using infinitesimal perturbation analysis. Discrete Event Dynamic Systems, 2000, 10(1-2): 5-32
    • (2000) Discrete Event Dynamic Systems , vol.10 , Issue.1-2 , pp. 5-32
    • Tang, Q.Y.1    Chen, H.F.2
  • 75
    • 0032650511 scopus 로고    scopus 로고
    • Optimal material release times in stochastic production environments
    • Hasan C N, Spearman M L. Optimal material release times in stochastic production environments. International Journal of Production Research, 1999, 37(6): 1201-1216
    • (1999) International Journal of Production Research , vol.37 , Issue.6 , pp. 1201-1216
    • Hasan, C.N.1    Spearman, M.L.2
  • 78
    • 0001821536 scopus 로고
    • A globally convergent stochastic approximation
    • Yakowitz S. A globally convergent stochastic approximation. SIAM Journal on Control and Optimization, 1993, 31(1): 30-40
    • (1993) SIAM Journal on Control and Optimization , vol.31 , Issue.1 , pp. 30-40
    • Yakowitz, S.1
  • 81
    • 0032634574 scopus 로고    scopus 로고
    • Finding optimal material release times using simulation-based optimization
    • Homem-de-Mello T, Shapiro A, Spearman M L. Finding optimal material release times using simulation-based optimization. Management Science, 1999, 45(1): 86-102
    • (1999) Management Science , vol.45 , Issue.1 , pp. 86-102
    • Homem-De-mello, T.1    Shapiro, A.2    Spearman, M.L.3
  • 82
    • 0036013019 scopus 로고    scopus 로고
    • The sample average approximation method for stochastic discrete optimization
    • Kleywegt A J, Shapiro A, Homem-de-Mello T. The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 2002, 12(2): 479-502
    • (2002) SIAM Journal on Optimization , vol.12 , Issue.2 , pp. 479-502
    • Kleywegt, A.J.1    Shapiro, A.2    Homem-de-Mello, T.3
  • 83
    • 0028751954 scopus 로고
    • Retrospective approximation algorithms for stochastic root finding
    • Lake Buena Vista, FL, USA: IEEE
    • Chen H F, Schmeiser B W. Retrospective approximation algorithms for stochastic root finding. In: Proceedings of the 1994 Winter Simulation Conference. Lake Buena Vista, FL, USA: IEEE, 1994. 255-261
    • (1994) Proceedings of the 1994 Winter Simulation Conference , pp. 255-261
    • Chen, H.F.1    Schmeiser, B.W.2
  • 86
    • 0000067553 scopus 로고
    • The exploration and exploitation of response surfaces: some general considerations and examples
    • Box G E P. The exploration and exploitation of response surfaces: some general considerations and examples. Biometrics, 1954, 10(1): 16-60
    • (1954) Biometrics , vol.10 , Issue.1 , pp. 16-60
    • Box, G.E.P.1
  • 87
    • 0015961584 scopus 로고
    • A gradient-regression search procedure for simulation experimentation
    • Piscataway, NJ: IEEE
    • Biles W E. A gradient-regression search procedure for simulation experimentation. In: Proceedings of the 1974 Winter Simulation Conference. Piscataway, NJ: IEEE, 1974. 491-497
    • (1974) Proceedings of the 1974 Winter Simulation Conference , pp. 491-497
    • Biles, W.E.1
  • 88
    • 0016971587 scopus 로고
    • Automatic optimum-seeking program for digital simulation
    • Smith D E. Automatic optimum-seeking program for digital simulation. Simulation, 1976, 27(1): 27-31
    • (1976) Simulation , vol.27 , Issue.1 , pp. 27-31
    • Smith, D.E.1
  • 89
    • 0018058053 scopus 로고
    • Simulation optimization using response surfaces based on spline approximations
    • Piscataway, NJ: IEEE
    • Daughety A F, Turnquist M A. Simulation optimization using response surfaces based on spline approximations. In: Proceedings of the 1978 Winter Simulation Conference. Piscataway, NJ: IEEE, 1978. 183-193
    • (1978) Proceedings of the 1978 Winter Simulation Conference , pp. 183-193
    • Daughety, A.F.1    Turnquist, M.A.2
  • 90
    • 0023579584 scopus 로고
    • Future directions in response surface methodology for simulation
    • Piscataway, NJ: IEEE
    • Wilson J R. Future directions in response surface methodology for simulation. In: Proceedings of the 1987 Winter Simulation Conference. Piscataway, NJ: IEEE, 1987. 378-381
    • (1987) Proceedings of the 1987 Winter Simulation Conference , pp. 378-381
    • Wilson, J.R.1
  • 91
  • 92
    • 0001723504 scopus 로고
    • Optimization of simulation via quasi-Newton methods
    • Safizadeh M H, Signorile R. Optimization of simulation via quasi-Newton methods. ORSA Journal on Computing, 1994, 6(4): 398-408
    • (1994) ORSA Journal on Computing , vol.6 , Issue.4 , pp. 398-408
    • Safizadeh, M.H.1    Signorile, R.2
  • 93
    • 0032117586 scopus 로고    scopus 로고
    • An enhanced response surface methodology (RSM) algorithm using gradient deflection and second-order search strategies
    • Joshi S, Sherali H D, Tew J D. An enhanced response surface methodology (RSM) algorithm using gradient deflection and second-order search strategies. Computers and Operations Research, 1998, 25(7-8): 531-541
    • (1998) Computers and Operations Research , vol.25 , Issue.7-8 , pp. 531-541
    • Joshi, S.1    Sherali, H.D.2    Tew, J.D.3
  • 94
    • 0002666067 scopus 로고    scopus 로고
    • Experimental design for sensitivity analysis, optimization, and validation of simulation models
    • Chapter 6 (Banks J (editor)). New York: Wiley
    • Kleijnen J P C. 1998. Experimental design for sensitivity analysis, optimization, and validation of simulation models. Handbook of Simulation, Chapter 6 (Banks J (editor)). New York: Wiley. 173-223
    • (1998) Handbook of Simulation , pp. 173-223
    • Kleijnen, J.P.C.1
  • 95
    • 0027575873 scopus 로고
    • Simulation and optimization in production planning: a case study
    • Kleijnen J P C. Simulation and optimization in production planning: a case study. Decision Support Systems, 1993, 9(3): 269-280
    • (1993) Decision Support Systems , vol.9 , Issue.3 , pp. 269-280
    • Kleijnen, J.P.C.1
  • 96
    • 84982743538 scopus 로고
    • Sensitivity analysis and optimization of system dynamics models: regression analysis and statistical design of experiments
    • Kleijnen J P C. Sensitivity analysis and optimization of system dynamics models: regression analysis and statistical design of experiments. System Dynamics Review, 1995, 11(4): 275-288
    • (1995) System Dynamics Review , vol.11 , Issue.4 , pp. 275-288
    • Kleijnen, J.P.C.1
  • 97
  • 101
    • 0001552833 scopus 로고
    • On two-stage selection procedures and related probability-inequalities
    • Rinott Y. On two-stage selection procedures and related probability-inequalities. Communications in Statistics-Theory and Methods, 1978, 7(8): 799-811
    • (1978) Communications in Statistics-Theory and Methods , vol.7 , Issue.8 , pp. 799-811
    • Rinott, Y.1
  • 102
    • 0001730407 scopus 로고
    • On a statistic which arises in selection and ranking problems
    • Gupta S S, Sobel M. On a statistic which arises in selection and ranking problems. The Annals of Mathematical Statistics, 1957, 28(4): 957-967
    • (1957) The Annals of Mathematical Statistics , vol.28 , Issue.4 , pp. 957-967
    • Gupta, S.S.1    Sobel, M.2
  • 103
    • 0001186451 scopus 로고
    • On some multiple decision (selection and ranking) rules
    • Gupta S S. On some multiple decision (selection and ranking) rules. Technometrics, 1965, 7(2): 225-245
    • (1965) Technometrics , vol.7 , Issue.2 , pp. 225-245
    • Gupta, S.S.1
  • 104
    • 0024480802 scopus 로고
    • Restricted subset selection procedures for simulation
    • Sullivan D W, Wilson J R. Restricted subset selection procedures for simulation. Operations Research, 1989, 37(1): 52-71
    • (1989) Operations Research , vol.37 , Issue.1 , pp. 52-71
    • Sullivan, D.W.1    Wilson, J.R.2
  • 105
    • 0035521447 scopus 로고    scopus 로고
    • Simple procedures for selecting the best simulated system when the number of alternatives is large
    • Nelson B L, Swann J, Goldsman D, Song W. Simple procedures for selecting the best simulated system when the number of alternatives is large. Operations Research, 2001, 49(6): 950-963
    • (2001) Operations Research , vol.49 , Issue.6 , pp. 950-963
    • Nelson, B.L.1    Swann, J.2    Goldsman, D.3    Song, W.4
  • 106
    • 0347556828 scopus 로고    scopus 로고
    • Using ranking and selection to "clean up" after simulation optimization
    • Boesel J, Nelson B L, Kim S H. Using ranking and selection to "clean up" after simulation optimization. Operations Research, 2003, 51(5): 814-825
    • (2003) Operations Research , vol.51 , Issue.5 , pp. 814-825
    • Boesel, J.1    Nelson, B.L.2    Kim, S.H.3
  • 108
    • 0000210329 scopus 로고
    • Constrained simultaneous confidence intervals for multiple comparisons with the best
    • Hsu J C. Constrained simultaneous confidence intervals for multiple comparisons with the best. The Annals of Statistics, 1984, 12(3): 1136-1144
    • (1984) The Annals of Statistics , vol.12 , Issue.3 , pp. 1136-1144
    • Hsu, J.C.1
  • 109
    • 38249027281 scopus 로고
    • Sample size computation for designing multiple comparison experiments
    • Hsu J C. Sample size computation for designing multiple comparison experiments. Computational Statistics and Data Analysis, 1988, 7(1): 79-91
    • (1988) Computational Statistics and Data Analysis , vol.7 , Issue.1 , pp. 79-91
    • Hsu, J.C.1
  • 110
    • 0009663357 scopus 로고
    • A multiple comparison procedure for comparing several treatments with a control
    • Dunnett C W. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 1955, 50(272): 1096-1121
    • (1955) Journal of the American Statistical Association , vol.50 , Issue.272 , pp. 1096-1121
    • Dunnett, C.W.1
  • 113
    • 0024901726 scopus 로고
    • Optimization using common random numbers, control variates and multiple comparisons with the best
    • Washington, DC, USA: IEEE
    • Yang W N, Nelson B L. Optimization using common random numbers, control variates and multiple comparisons with the best. In: Proceedings of the 1989 Winter Simulation Conference. Washington, DC, USA: IEEE, 1989. 444-449
    • (1989) Proceedings of the 1989 Winter Simulation Conference , pp. 444-449
    • Yang, W.N.1    Nelson, B.L.2
  • 114
    • 0008612351 scopus 로고
    • Using common random numbers and control variates in multiple-comparison procedures
    • Yang W N, Nelson B L. Using common random numbers and control variates in multiple-comparison procedures. Operations Research, 1991, 39(4): 583-591
    • (1991) Operations Research , vol.39 , Issue.4 , pp. 583-591
    • Yang, W.N.1    Nelson, B.L.2
  • 115
    • 0025548410 scopus 로고
    • Batch-size effects on simulation optimization using multiple comparisons with the best
    • New Orleans, LA
    • Goldsman L, Nelson B L. Batch-size effects on simulation optimization using multiple comparisons with the best. In: Proceedings of the 1990 Winter Simulation Conference. New Orleans, LA, 1990. 288-293
    • (1990) Proceedings of the 1990 Winter Simulation Conference , pp. 288-293
    • Goldsman, L.1    Nelson, B.L.2
  • 117
    • 0029539405 scopus 로고
    • Selecting the best system in steady-state simulations using batch means
    • Piscataway, NJ: IEEE
    • Nakayama M K. Selecting the best system in steady-state simulations using batch means. In: Proceedings of the 1995 Winter Simulation Conference. Piscataway, NJ: IEEE, 1995. 362-366
    • (1995) Proceedings of the 1995 Winter Simulation Conference , pp. 362-366
    • Nakayama, M.K.1
  • 118
    • 0031318613 scopus 로고    scopus 로고
    • Multiple-comparison procedures for steady-state simulations
    • Nakayama M K. Multiple-comparison procedures for steady-state simulations. The Annals of Statistics, 1997, 25(6): 2433-2450
    • (1997) The Annals of Statistics , vol.25 , Issue.6 , pp. 2433-2450
    • Nakayama, M.K.1
  • 119
    • 0027882319 scopus 로고
    • Simultaneous ranking, selection and multiple comparisons for simulation
    • Piscataway, NJ: IEEE
    • Matejcik F J, Nelson B L. Simultaneous ranking, selection and multiple comparisons for simulation. In: Proceedings of the 1993 Winter Simulation Conference. Piscataway, NJ: IEEE, 1993: 386-392
    • (1993) Proceedings of the 1993 Winter Simulation Conference , pp. 386-392
    • Matejcik, F.J.1    Nelson, B.L.2
  • 120
    • 0028731024 scopus 로고
    • Ranking, selection and multiple comparisons in computer simulation
    • Lake Buena Vista, FL, USA: IEEE
    • Goldsman D, Nelson B L. Ranking, selection and multiple comparisons in computer simulation. In: Proceedings of the 1994 Winter Simulation Conference. Lake Buena Vista, FL, USA: IEEE, 1994: 192-199
    • (1994) Proceedings of the 1994 Winter Simulation Conference , pp. 192-199
    • Goldsman, D.1    Nelson, B.L.2
  • 121
    • 0001036667 scopus 로고
    • Two-stage multiple comparisons with the best for computer simulation
    • Matejcik F J, Nelson B L. Two-stage multiple comparisons with the best for computer simulation. Operations Research, 1995, 43(4): 633-640
    • (1995) Operations Research , vol.43 , Issue.4 , pp. 633-640
    • Matejcik, F.J.1    Nelson, B.L.2
  • 126
    • 0030522942 scopus 로고    scopus 로고
    • Convergence properties of ordinal comparison in the simulation of discrete event dynamic systems
    • Dai L. Convergence properties of ordinal comparison in the simulation of discrete event dynamic systems. Journal of Optimization Theory and Applications, 1996, 91(2): 363-388
    • (1996) Journal of Optimization Theory and Applications , vol.91 , Issue.2 , pp. 363-388
    • Dai, L.1
  • 127
    • 0031123380 scopus 로고    scopus 로고
    • Dynamics and convergence rate of ordinal comparison of stochastic discrete-event systems
    • Xie X. Dynamics and convergence rate of ordinal comparison of stochastic discrete-event systems. IEEE Transactions on Automatic Control, 1997, 42(4): 586-590
    • (1997) IEEE Transactions on Automatic Control , vol.42 , Issue.4 , pp. 586-590
    • Xie, X.1
  • 128
    • 0031535204 scopus 로고    scopus 로고
    • Rates of convergence of ordinal comparison for dependent discrete event dynamic systems
    • Dai L, Chen C H. Rates of convergence of ordinal comparison for dependent discrete event dynamic systems. Journal of Optimization Theory and Applications, 1997, 94(1): 29-54
    • (1997) Journal of Optimization Theory and Applications , vol.94 , Issue.1 , pp. 29-54
    • Dai, L.1    Chen, C.H.2
  • 130
    • 0040238297 scopus 로고    scopus 로고
    • Universal alignment probabilities and subset selection for ordinal optimization
    • Lau T W E, Ho Y C. Universal alignment probabilities and subset selection for ordinal optimization. Journal of Optimization Theory and Applications, 1997, 93(3): 455-489
    • (1997) Journal of Optimization Theory and Applications , vol.93 , Issue.3 , pp. 455-489
    • Lau, T.W.E.1    Ho, Y.C.2
  • 131
    • 0030212017 scopus 로고    scopus 로고
    • A lower bound for the correct subset-selection probability and its application to discrete-event system simulations
    • Chen C H. A lower bound for the correct subset-selection probability and its application to discrete-event system simulations. IEEE Transactions on Automatic Control, 1996, 41(8): 1227-1231
    • (1996) IEEE Transactions on Automatic Control , vol.41 , Issue.8 , pp. 1227-1231
    • Chen, C.H.1
  • 133
    • 0034187322 scopus 로고    scopus 로고
    • Computing efforts allocation for ordinal optimization and discrete event simulation
    • Chen H C, Chen C H, Yücesan E. Computing efforts allocation for ordinal optimization and discrete event simulation. IEEE Transactions on Automatic Control, 2000, 45(5): 960-964
    • (2000) IEEE Transactions on Automatic Control , vol.45 , Issue.5 , pp. 960-964
    • Chen, H.C.1    Chen, C.H.2    Yücesan, E.3
  • 134
    • 0034225544 scopus 로고    scopus 로고
    • Simulation budget allocation for further enhancing the efficiency of ordinal optimization
    • Chen C H, Lin J, Yücesan E, Chick S E. Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems, 2000, 10(3): 251-270
    • (2000) Discrete Event Dynamic Systems , vol.10 , Issue.3 , pp. 251-270
    • Chen, C.H.1    Lin, J.2    Yücesan, E.3    Chick, S.E.4
  • 135
    • 0034229478 scopus 로고    scopus 로고
    • A new algorithm for stochastic discrete resource allocation optimization
    • Shi L, Chen C H. A new algorithm for stochastic discrete resource allocation optimization. Discrete Event Dynamic Systems, 2000, 10(3): 271-294
    • (2000) Discrete Event Dynamic Systems , vol.10 , Issue.3 , pp. 271-294
    • Shi, L.1    Chen, C.H.2
  • 142
    • 38549144446 scopus 로고    scopus 로고
    • Simulation allocation for determining the best design in the presence of correlated sampling
    • Fu M C, Hu J Q, Chen C H, Xiong X. Simulation allocation for determining the best design in the presence of correlated sampling. INFORMS Journal on Computing, 2007, 19(1): 101-111
    • (2007) INFORMS Journal on Computing , vol.19 , Issue.1 , pp. 101-111
    • Fu, M.C.1    Hu, J.Q.2    Chen, C.H.3    Xiong, X.4
  • 143
    • 17744392866 scopus 로고    scopus 로고
    • A large deviations perspective on ordinal optimization
    • Washington, DC, USA: IEEE
    • Glynn P, Juneja S. A large deviations perspective on ordinal optimization. In: Proceedings of the 2004 Winter Simulation Conference. Washington, DC, USA: IEEE, 2004. 577-585
    • (2004) Proceedings of the 2004 Winter Simulation Conference , pp. 577-585
    • Glynn, P.1    Juneja, S.2
  • 144
    • 27344432350 scopus 로고    scopus 로고
    • Selection procedures with frequentist expected opportunity cost bounds
    • Chick S E, Wu Y Z. Selection procedures with frequentist expected opportunity cost bounds. Operations Research, 2005, 53(5): 867-878
    • (2005) Operations Research , vol.53 , Issue.5 , pp. 867-878
    • Chick, S.E.1    Wu, Y.Z.2
  • 146
    • 0742269303 scopus 로고    scopus 로고
    • Computing budget allocation for efficient ranking and selection of variances with application to target tracking algorithms
    • Trailovic L, Pao L Y. Computing budget allocation for efficient ranking and selection of variances with application to target tracking algorithms. IEEE Transactions on Automatic Control, 2004, 49(1): 58-67
    • (2004) IEEE Transactions on Automatic Control , vol.49 , Issue.1 , pp. 58-67
    • Trailovic, L.1    Pao, L.Y.2
  • 147
    • 61349118110 scopus 로고    scopus 로고
    • Efficient simulation budget allocation for selecting an optimal subset
    • Chen C H, He D, Fu M, Lee L H. Efficient simulation budget allocation for selecting an optimal subset. INFORMS Journal on Computing, 2008, 20(4): 579-595
    • (2008) INFORMS Journal on Computing , vol.20 , Issue.4 , pp. 579-595
    • Chen, C.H.1    He, D.2    Fu, M.3    Lee, L.H.4
  • 150
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S, Gelatt C D Jr, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220(4598): 671-680
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt Jr., C.D.2    Vecchi, M.P.3
  • 152
    • 0344182998 scopus 로고    scopus 로고
    • A simulated annealing algorithm with constant temperature for discrete stochastic optimization
    • Alrefaei M H, Andradóttir S. A simulated annealing algorithm with constant temperature for discrete stochastic optimization. Management Science, 1999, 45(5): 748-764
    • (1999) Management Science , vol.45 , Issue.5 , pp. 748-764
    • Alrefaei, M.H.1    Andradóttir, S.2
  • 153
    • 4544235910 scopus 로고    scopus 로고
    • An improved simulated annealing simulation optimization method for discrete parameter stochastic systems
    • Rosen S L, Harmonosky C M. An improved simulated annealing simulation optimization method for discrete parameter stochastic systems. Computers and Operations Research, 2005, 32(2): 343-358
    • (2005) Computers and Operations Research , vol.32 , Issue.2 , pp. 343-358
    • Rosen, S.L.1    Harmonosky, C.M.2
  • 156
    • 0026924055 scopus 로고
    • Tabu search method with random moves for globally optimal design
    • Hu N F. Tabu search method with random moves for globally optimal design. International Journal for Numerical Methods in Engineering, 1992, 35(5): 1055-1070
    • (1992) International Journal for Numerical Methods in Engineering , vol.35 , Issue.5 , pp. 1055-1070
    • Hu, N.F.1
  • 157
    • 0032599560 scopus 로고    scopus 로고
    • A simulator that uses Tabu search to approach the optimal solution to stochastic inventory models
    • Lopez-Garcia L, Posada-Bolivar A. A simulator that uses Tabu search to approach the optimal solution to stochastic inventory models. Computers and Industrial Engineering, 1999, 37(1): 215-218
    • (1999) Computers and Industrial Engineering , vol.37 , Issue.1 , pp. 215-218
    • Lopez-Garcia, L.1    Posada-Bolivar, A.2
  • 158
    • 0032049359 scopus 로고    scopus 로고
    • Determining buffer location and size in production lines using Tabu search
    • Lutz C M, Roscoe Davis K, Sun M. Determining buffer location and size in production lines using Tabu search. European Journal of Operational Research, 1998, 106(2): 301-316
    • (1998) European Journal of Operational Research , vol.106 , Issue.2 , pp. 301-316
    • Lutz, C.M.1    Roscoe Davis, K.2    Sun, M.3
  • 159
    • 0032390295 scopus 로고    scopus 로고
    • Using Tabu search to determine the number of kanbans and lotsizes in a generic kanban system
    • Martin A D, Chang T M, Yih Y, Kincaid R K. Using Tabu search to determine the number of kanbans and lotsizes in a generic kanban system. Annals of Operations Research, 1998, 78: 201-217
    • (1998) Annals of Operations Research , vol.78 , pp. 201-217
    • Martin, A.D.1    Chang, T.M.2    Yih, Y.3    Kincaid, R.K.4
  • 161
    • 5144226254 scopus 로고    scopus 로고
    • Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors-a case study
    • Yang T, Kuo Y, Chang I. Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors-a case study. International Journal of Production Research, 2004, 42(19): 4015-4030
    • (2004) International Journal of Production Research , vol.42 , Issue.19 , pp. 4015-4030
    • Yang, T.1    Kuo, Y.2    Chang, I.3
  • 164
    • 0033078286 scopus 로고    scopus 로고
    • Simulation optimization with qualitative variables and structural model changes: a genetic algorithm approach
    • Azadivar F, Tompkins G. Simulation optimization with qualitative variables and structural model changes: a genetic algorithm approach. European Journal of Operational Research, 1999, 113(1): 169-182
    • (1999) European Journal of Operational Research , vol.113 , Issue.1 , pp. 169-182
    • Azadivar, F.1    Tompkins, G.2
  • 165
    • 0034694502 scopus 로고    scopus 로고
    • Facility layout optimization using simulation and genetic algorithms
    • Azadivar F, Wang J. Facility layout optimization using simulation and genetic algorithms. International Journal of Production Research, 2000, 38(17): 4369-4383
    • (2000) International Journal of Production Research , vol.38 , Issue.17 , pp. 4369-4383
    • Azadivar, F.1    Wang, J.2
  • 166
    • 27144503667 scopus 로고    scopus 로고
    • A hybrid genetic algorithm-neural network strategy for simulation optimization
    • Wang L. A hybrid genetic algorithm-neural network strategy for simulation optimization. Applied Mathematics and Computation, 2005, 170(2): 1329-1343
    • (2005) Applied Mathematics and Computation , vol.170 , Issue.2 , pp. 1329-1343
    • Wang, L.1
  • 167
    • 33644901817 scopus 로고    scopus 로고
    • Multi-response simulation optimization using genetic algorithm within desirability function framework
    • Pasandideh S H R, Niaki S T A. Multi-response simulation optimization using genetic algorithm within desirability function framework. Applied Mathematics and Computation, 2006, 175(1): 366-382
    • (2006) Applied Mathematics and Computation , vol.175 , Issue.1 , pp. 366-382
    • Pasandideh, S.H.R.1    Niaki, S.T.A.2
  • 168
    • 33749152365 scopus 로고    scopus 로고
    • A simulation-based genetic algorithm for inventory optimization in a serial supply chain
    • Daniel J, Rajendran C. A simulation-based genetic algorithm for inventory optimization in a serial supply chain. International Transactions in Operational Research, 2005, 12(1): 101-127
    • (2005) International Transactions in Operational Research , vol.12 , Issue.1 , pp. 101-127
    • Daniel, J.1    Rajendran, C.2
  • 169
    • 84989487658 scopus 로고
    • Heuristics for integer programming using surrogate constraints
    • Glover F. Heuristics for integer programming using surrogate constraints. Decision Sciences, 1977, 8(1): 156-166
    • (1977) Decision Sciences , vol.8 , Issue.1 , pp. 156-166
    • Glover, F.1
  • 171
    • 0347899800 scopus 로고    scopus 로고
    • Fundamentals of scatter search and path relinking
    • Glover F, Laguna M, Martí R. Fundamentals of scatter search and path relinking. Control and Cybernetics, 2000, 39(3): 653-684
    • (2000) Control and Cybernetics , vol.39 , Issue.3 , pp. 653-684
    • Glover, F.1    Laguna, M.2    Martí, R.3
  • 174
    • 0032782385 scopus 로고    scopus 로고
    • New parallel randomized algorithms for the traveling salesman problem
    • Shi L, Ólafsson S, Sun N. New parallel randomized algorithms for the traveling salesman problem. Computers and Operations Research, 1999, 26(4): 371-394
    • (1999) Computers and Operations Research , vol.26 , Issue.4 , pp. 371-394
    • Shi, L.1    Ólafsson, S.2    Sun, N.3
  • 175
    • 0034179713 scopus 로고    scopus 로고
    • Nested partitions method for global optimization
    • Shi L, Ólafsson S. Nested partitions method for global optimization. Operations Research, 2000, 48(3): 390-407
    • (2000) Operations Research , vol.48 , Issue.3 , pp. 390-407
    • Shi, L.1    Ólafsson, S.2
  • 176
    • 44849139387 scopus 로고    scopus 로고
    • Convergence rate of the nested partitions method for stochastic optimization
    • Shi L Y, Ólafsson S. Convergence rate of the nested partitions method for stochastic optimization. Methodology and Computing in Applied Probability, 2000, 2(1): 37-58
    • (2000) Methodology and Computing in Applied Probability , vol.2 , Issue.1 , pp. 37-58
    • Shi, L.Y.1    Ólafsson, S.2
  • 178
    • 0034229478 scopus 로고    scopus 로고
    • A new algorithm for stochastic discrete resource allocation optimization
    • Shi L Y, Chen C H. A new algorithm for stochastic discrete resource allocation optimization. Discrete Event Dynamic Systems, 2000, 10(3): 271-294
    • (2000) Discrete Event Dynamic Systems , vol.10 , Issue.3 , pp. 271-294
    • Shi, L.Y.1    Chen, C.H.2
  • 179
    • 0035707473 scopus 로고    scopus 로고
    • An optimization framework for product design
    • Shi L Y, Ólafsson S, Chen Q. An optimization framework for product design. Management Science, 2001, 47(12): 1681-1692
    • (2001) Management Science , vol.47 , Issue.12 , pp. 1681-1692
    • Shi, L.Y.1    Ólafsson, S.2    Chen, Q.3
  • 180
  • 181
    • 45949105786 scopus 로고    scopus 로고
    • A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy
    • D'Souza W D, Zhang H H, Nazareth D P, Shi L Y, Meyer R R. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy. Physics in Medicine and Biology, 2008, 53(12): 3293-3307
    • (2008) Physics in Medicine and Biology , vol.53 , Issue.12 , pp. 3293-3307
    • D'Souza, W.D.1    Zhang, H.H.2    Nazareth, D.P.3    Shi, L.Y.4    Meyer, R.R.5
  • 182
    • 62949114480 scopus 로고    scopus 로고
    • Nested partitions for the large-scale extended job shop scheduling problem
    • Yau H, Shi L Y. Nested partitions for the large-scale extended job shop scheduling problem. Annals of Operations Research, 2009, 168(1): 23-39
    • (2009) Annals of Operations Research , vol.168 , Issue.1 , pp. 23-39
    • Yau, H.1    Shi, L.Y.2
  • 183
    • 84992212061 scopus 로고    scopus 로고
    • A hybrid nested partitions algorithm for scheduling flexible resource in flow shop problem
    • Wu W, Wei J H, Guan X H, Shi L Y. A hybrid nested partitions algorithm for scheduling flexible resource in flow shop problem. International Journal of Production Research, 2012, 50(10): 2555-2569
    • (2012) International Journal of Production Research , vol.50 , Issue.10 , pp. 2555-2569
    • Wu, W.1    Wei, J.H.2    Guan, X.H.3    Shi, L.Y.4
  • 185
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder J A, Mead R. A simplex method for function minimization. The Computer Journal, 1965, 7(4): 308-313
    • (1965) The Computer Journal , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 186
    • 0024070467 scopus 로고
    • Optimization of discrete variable stochastic systems by computer simulation
    • Azadivar F, Lee Y H. Optimization of discrete variable stochastic systems by computer simulation. Mathematics and Computers in Simulation, 1988, 30(4): 331-345
    • (1988) Mathematics and Computers in Simulation , vol.30 , Issue.4 , pp. 331-345
    • Azadivar, F.1    Lee, Y.H.2
  • 187
    • 0001446599 scopus 로고    scopus 로고
    • Nelder-Mead simplex modifications for simulation optimization
    • Barton R R, Ivey J S. Nelder-Mead simplex modifications for simulation optimization. Management Science, 1996, 42(7): 954-973
    • (1996) Management Science , vol.42 , Issue.7 , pp. 954-973
    • Barton, R.R.1    Ivey, J.S.2
  • 188
    • 84938447945 scopus 로고
    • A direct search solution of numerical and statistical problems
    • Hooke R, Jeeves T A. A direct search solution of numerical and statistical problems. Journal of the ACM (JACM), 1961, 8(2): 212-229
    • (1961) Journal of the ACM (JACM) , vol.8 , Issue.2 , pp. 212-229
    • Hooke, R.1    Jeeves, T.A.2
  • 189
    • 0030283377 scopus 로고    scopus 로고
    • Simulation optimization through direct search for multi-objective manufacturing systems
    • Chen M C, Tsai D M. Simulation optimization through direct search for multi-objective manufacturing systems. Production Planning and Control, 1996, 7(6): 554-565
    • (1996) Production Planning and Control , vol.7 , Issue.6 , pp. 554-565
    • Chen, M.C.1    Tsai, D.M.2
  • 190
    • 0343653510 scopus 로고
    • Optimizing discrete event dynamic systems via the gradient surface method
    • Ho Y C, Shi L, Dai L, Gong W B. Optimizing discrete event dynamic systems via the gradient surface method. Discrete Event Dynamic Systems, 1992, 2(2): 99-120
    • (1992) Discrete Event Dynamic Systems , vol.2 , Issue.2 , pp. 99-120
    • Ho, Y.C.1    Shi, L.2    Dai, L.3    Gong, W.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.