메뉴 건너뛰기




Volumn 72, Issue , 2014, Pages 92-104

Recursive partitioning for missing data imputation in the presence of interaction effects

Author keywords

CART; Classification and regression trees; Interaction problem; MICE; Nonlinear relations; Random forests

Indexed keywords

CART; CLASSIFICATION AND REGRESSION TREE; INTERACTION PROBLEMS; MICE; NONLINEAR RELATIONS; RANDOM FORESTS;

EID: 84888869357     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2013.10.025     Document Type: Article
Times cited : (197)

References (34)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • L. Breiman Random forest Mach. Learn. 45 2001 5 32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 77958547578 scopus 로고    scopus 로고
    • Multiple imputation for missing data via sequential regression trees
    • L.F. Burgette, and K.P. Reiter Multiple imputation for missing data via sequential regression trees Amer. J. Epidemiol. 172 2010 1070 1076
    • (2010) Amer. J. Epidemiol. , vol.172 , pp. 1070-1076
    • Burgette, L.F.1    Reiter, K.P.2
  • 6
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • L.M. Collins, J.L. Schafer, and C.M. Kam A comparison of inclusive and restrictive strategies in modern missing data procedures Psychol. Methods 6 2001 330 351 (Pubitemid 33599063)
    • (2001) Psychological Methods , vol.6 , Issue.3 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 7
    • 77956661141 scopus 로고    scopus 로고
    • Combining an additive and tree-based regression model simultaneously: STIMA
    • E. Dusseldorp, C. Conversano, and B.J. Van Os Combining an additive and tree-based regression model simultaneously: STIMA J. Comput. Graph. Statist. 19 2010 514 530
    • (2010) J. Comput. Graph. Statist. , vol.19 , pp. 514-530
    • Dusseldorp, E.1    Conversano, C.2    Van Os, B.J.3
  • 8
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J.H. Friedman Multivariate adaptive regression splines Ann. Statist. 19 1991 1 67
    • (1991) Ann. Statist. , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 9
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • J.W. Graham, A.E. Olchowski, and T.D. Gilreath How many imputations are really needed? Some practical clarifications of multiple imputation theory Prevention Sci. 8 2007 206 213
    • (2007) Prevention Sci. , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 10
    • 0032333396 scopus 로고    scopus 로고
    • Using odds ratios as effect sizes for meta-analysis of dichotomous data: A primeur on methods and issues
    • C. Haddock, D. Rindskopf, and W. Shadish Using odds ratios as effect sizes for meta-analysis of dichotomous data: a primeur on methods and issues Psychol. Methods 3 1998 339 353
    • (1998) Psychol. Methods , vol.3 , pp. 339-353
    • Haddock, C.1    Rindskopf, D.2    Shadish, W.3
  • 14
    • 84888864741 scopus 로고    scopus 로고
    • Partykit: A toolkit for recursive partitioning
    • Hothorn, T., Zeileis, A., 2013. Partykit: a toolkit for recursive partitioning. R package version 0.1-6. URL: http://CRAN.R-project.org/package= partykit.
    • (2013) R Package Version 0.1-6
    • Hothorn, T.1    Zeileis, A.2
  • 15
    • 35148857674 scopus 로고    scopus 로고
    • Missing data imputation, matching and other applications of random recursive partitioning
    • DOI 10.1016/j.csda.2006.12.036, PII S0167947306005135
    • S.M. Iacus, and G. Porro Missing data imputation, matching and other applications of random recursive partitioning Comput. Statist. Data Anal. 52 2007 773 789 (Pubitemid 47552603)
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.2 , pp. 773-789
    • Iacus, S.M.1    Porro, G.2
  • 16
    • 46749098330 scopus 로고    scopus 로고
    • Invariant and metric free proximities for data matching: An R package
    • S.M. Iacus, and G. Porro Invariant and metric free proximities for data matching: an R package J. Stat. Softw. 25 2008 1 22
    • (2008) J. Stat. Softw. , vol.25 , pp. 1-22
    • Iacus, S.M.1    Porro, G.2
  • 17
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • G.V. Kass An exploratory technique for investigating large quantities of categorical data J. R. Stat. Soc. 29 1980 119 127
    • (1980) J. R. Stat. Soc. , vol.29 , pp. 119-127
    • Kass, G.V.1
  • 18
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • URL
    • A. Liaw, and M. Wiener Classification and regression by randomforest R News 2 2002 18 22 URL: http://CRAN.R-project.org/package=randomForest
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 19
    • 0036556537 scopus 로고    scopus 로고
    • Regression trees with unbiased variable selection and interaction detection
    • W.Y. Loh Regression trees with unbiased variable selection and interaction detection Statist. Sinica 12 2002 361 386
    • (2002) Statist. Sinica , vol.12 , pp. 361-386
    • Loh, W.Y.1
  • 20
    • 0013287518 scopus 로고
    • The interpretation of significant interaction
    • A. Lubin The interpretation of significant interaction Educ. Psychol. Meas. 21 1961 807 817
    • (1961) Educ. Psychol. Meas. , vol.21 , pp. 807-817
    • Lubin, A.1
  • 21
    • 84888873861 scopus 로고    scopus 로고
    • Stability and structure of cart and span search generated data partitions for the analysis of low birth weight
    • R.J. Marshall, and P. Kitsantas Stability and structure of cart and span search generated data partitions for the analysis of low birth weight J. Data Sci. 10 2012 61 73
    • (2012) J. Data Sci. , vol.10 , pp. 61-73
    • Marshall, R.J.1    Kitsantas, P.2
  • 22
    • 79751517591 scopus 로고    scopus 로고
    • Binary recursive partitioning: Background, methods, and application to psychology
    • E.C. Merkle, and V.A. Schaffer Binary recursive partitioning: background, methods, and application to psychology British J. Math. Statist. Psych. 64 2011 161 181
    • (2011) British J. Math. Statist. Psych. , vol.64 , pp. 161-181
    • Merkle, E.C.1    Schaffer, V.A.2
  • 23
    • 0006178946 scopus 로고
    • Problems in the analysis of survey data, and a proposal
    • J.N. Morgan, and J.A. Sonquist Problems in the analysis of survey data, and a proposal J. Amer. Statist. Assoc. 58 1963 415 434
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 415-434
    • Morgan, J.N.1    Sonquist, J.A.2
  • 24
    • 34548133733 scopus 로고    scopus 로고
    • Multiple imputation and random forests (mirf) for unobservable, high dimensional data
    • Article 12
    • B.A.S. Nonyane, and A.S. Foulkes Multiple imputation and random forests (mirf) for unobservable, high dimensional data Int. J. Biostat. 3 2007 Article 12
    • (2007) Int. J. Biostat. , vol.3
    • Nonyane, B.A.S.1    Foulkes, A.S.2
  • 26
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing Vienna, Austria URL
    • R Development Core Team. R: A Language and Environment for Statistical Computing 2013 R Foundation for Statistical Computing Vienna, Austria URL: http://www.R-project.org/
    • (2013) R: A Language and Environment for Statistical Computing
  • 27
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+~years
    • D.B. Rubin Multiple imputation after 18+~years J. Am. Stat. Assoc. 91 1996 473 489
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 28
    • 80052836295 scopus 로고    scopus 로고
    • A two-mode clustering method to capture the nature of the dominant interaction pattern in large profile data matrices
    • J. Schepers, and I. Van Mechelen A two-mode clustering method to capture the nature of the dominant interaction pattern in large profile data matrices Psychol. Methods 16 2011 361 371
    • (2011) Psychol. Methods , vol.16 , pp. 361-371
    • Schepers, J.1    Van Mechelen, I.2
  • 29
    • 84855177476 scopus 로고    scopus 로고
    • Missforest - Non-parametric missing value imputation for mixed-type data
    • D.J. Stekhoven, and P. Bühlmann Missforest - non-parametric missing value imputation for mixed-type data Bioinformatics 1 2012 112 118
    • (2012) Bioinformatics , vol.1 , pp. 112-118
    • Stekhoven, D.J.1    Bühlmann, P.2
  • 30
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests
    • C. Strobl, J. Malley, and A. Zeileis An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests Psychol. Methods 14 2009 323 348
    • (2009) Psychol. Methods , vol.14 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Zeileis, A.3
  • 32
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • S. Van Buuren Multiple imputation of discrete and continuous data by fully conditional specification Stat. Methods Med. Res. 16 2007 219 242
    • (2007) Stat. Methods Med. Res. , vol.16 , pp. 219-242
    • Van Buuren, S.1
  • 34
    • 79953732420 scopus 로고    scopus 로고
    • MICE: Multivariate imputation by chained equations in R
    • URL
    • S. Van Buuren, and K. Groothuis-Oudshoorn MICE: multivariate imputation by chained equations in R J. Stat. Softw. 45 2011 1 67 URL: http://CRAN.R- project.org/package=mice
    • (2011) J. Stat. Softw. , vol.45 , pp. 1-67
    • Van Buuren, S.1    Groothuis-Oudshoorn, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.