메뉴 건너뛰기




Volumn 52, Issue 2, 2007, Pages 773-789

Missing data imputation, matching and other applications of random recursive partitioning

Author keywords

Average treatment effect estimation; Classification; Missing data imputation; Recursive partitioning

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER SOFTWARE; MONTE CARLO METHODS; PROXIMITY INDICATORS; RECURSIVE FUNCTIONS;

EID: 35148857674     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.12.036     Document Type: Article
Times cited : (33)

References (32)
  • 1
    • 0002263953 scopus 로고
    • The irises of the Gaspe Peninsula
    • Anderson E. The irises of the Gaspe Peninsula. Bull. Amer. Iris Soc. 59 (1935) 25
    • (1935) Bull. Amer. Iris Soc. , vol.59 , pp. 25
    • Anderson, E.1
  • 2
    • 35148881664 scopus 로고    scopus 로고
    • Bonek, E., Herdin, M., 2004. A MIMO correlation matrix based metric for characterizing non-stationarity. In: Proceedings of the 13th IST Mobile & Wireless Communications Summit 2004, Lyon, France, June, 2004. Available at 〈http://publik.tuwien.ac.at/files/pub-et_8791.pdf〉.
  • 3
    • 35148821898 scopus 로고    scopus 로고
    • Bonek, E., Czink, N., Herdin, M., Özcelik, H., 2005. Correlation matrix distance, a meaningful measure for evaluation of non-stationary MIMO Channels. In: Proceedings of VTC 2005 Spring, Stockholm, Schweden, May 2005, pp. 1-5. Available at 〈http://publik.tuwien.ac.at/files/pub-et_10119.pdf〉.
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 45 1 (2001) 5-32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 35148814013 scopus 로고    scopus 로고
    • Breiman, L., 2002. Manual on setting up, using, and understanding random forests V3.1 〈http://oz.berkeley.edu/users/breiman/〉.
  • 7
    • 0032493550 scopus 로고    scopus 로고
    • Nearest-neighbor classification with categorical variables
    • Buttrey S.E. Nearest-neighbor classification with categorical variables. Comput. Statist. Data Anal. 28 (1998) 157-169
    • (1998) Comput. Statist. Data Anal. , vol.28 , pp. 157-169
    • Buttrey, S.E.1
  • 8
    • 35148833814 scopus 로고    scopus 로고
    • Chih-Chung, C., Chih-Jen, L., 1990. LIBSVM: A Library for Support Vector Machines 〈http://www.csie.ntu.edu.tw/∼cjlin/libsvm〉.
  • 10
    • 10044298710 scopus 로고    scopus 로고
    • Practical propensity score matching: a reply to Smith and Todd
    • Dehejia R. Practical propensity score matching: a reply to Smith and Todd. J. Econometrics 125 1-2 (2005) 355-364
    • (2005) J. Econometrics , vol.125 , Issue.1-2 , pp. 355-364
    • Dehejia, R.1
  • 11
    • 0442309558 scopus 로고    scopus 로고
    • Causal effects in nonexperimental studies: reevaluating the evaluation of training programs
    • Dehejia R., and Wahba S. Causal effects in nonexperimental studies: reevaluating the evaluation of training programs. J. Amer. Statist. Assoc. 94 (1999) 1053-1062
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1053-1062
    • Dehejia, R.1    Wahba, S.2
  • 12
    • 0036102924 scopus 로고    scopus 로고
    • Propensity score matching methods for non-experimental causal studies
    • Dehejia R., and Wahba S. Propensity score matching methods for non-experimental causal studies. Rev. Econom. Statist. 84 1 (2002) 151-161
    • (2002) Rev. Econom. Statist. , vol.84 , Issue.1 , pp. 151-161
    • Dehejia, R.1    Wahba, S.2
  • 13
    • 35148876571 scopus 로고    scopus 로고
    • Diamond, A., Sekhon, J.S., 2005. Genetic matching for estimating causal effects: a general multivariate matching method for achieving balance in observational studies. Working Paper. Available at 〈http://sekhon.polisci.berkeley.edu/papers/GenMatch.pdf〉.
  • 14
    • 35148883056 scopus 로고    scopus 로고
    • Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7, Part II, 179188.
  • 15
    • 35148896837 scopus 로고    scopus 로고
    • Friedman, J., 1984. Flexible metric nearest-neighbor classification. Technical Report, Stanford University.
  • 16
    • 0003138938 scopus 로고
    • Comparison of multivariates matching methods: structures, distances and algorithms
    • Gu X.S., and Rosenbaum P.R. Comparison of multivariates matching methods: structures, distances and algorithms. J. Comput. Graph. Statist. 2 (1993) 405-420
    • (1993) J. Comput. Graph. Statist. , vol.2 , pp. 405-420
    • Gu, X.S.1    Rosenbaum, P.R.2
  • 17
    • 35148901094 scopus 로고    scopus 로고
    • Hanson, R.H., 1978. The current population survey: design and methodology. Technical Paper No. 40, U.S. Bureau of the Census.
  • 18
    • 35148853648 scopus 로고    scopus 로고
    • Hartigan, J.A., 1982. Classification. In: S. Kotz, N.L. Johnson, C.B. Read (Eds.), Encyclopedia of Statistical Sciences, vol. 2. Wiley, New York, p. 110.
  • 19
    • 0001622038 scopus 로고    scopus 로고
    • Matching as an econometric evaluation estimator: evidence from evaluating a job training programme
    • Heckman J., Ichimura H., and Todd P. Matching as an econometric evaluation estimator: evidence from evaluating a job training programme. Rev. Econom. Stud. 64 4 (1997) 605-654
    • (1997) Rev. Econom. Stud. , vol.64 , Issue.4 , pp. 605-654
    • Heckman, J.1    Ichimura, H.2    Todd, P.3
  • 20
    • 0346856929 scopus 로고    scopus 로고
    • Characterizing selection bias using experimental data
    • Heckman J., Ichimura H., Smith J., and Todd P. Characterizing selection bias using experimental data. Econometrica 66 5 (1998) 1017-1098
    • (1998) Econometrica , vol.66 , Issue.5 , pp. 1017-1098
    • Heckman, J.1    Ichimura, H.2    Smith, J.3    Todd, P.4
  • 22
    • 35148852716 scopus 로고    scopus 로고
    • Iacus, S.M., Porro, G., 2006. Random recursive partitioning: a matching method for the estimation of the average treatment effect. Available at 〈http://services.bepress.com/unimi/economics/art9/〉.
  • 23
    • 0001093804 scopus 로고
    • Evaluating the econometric evaluations of training programs
    • Lalonde R. Evaluating the econometric evaluations of training programs. American Economic Review 76 (1986) 604-620
    • (1986) American Economic Review , vol.76 , pp. 604-620
    • Lalonde, R.1
  • 25
    • 0036556537 scopus 로고    scopus 로고
    • Regression trees with unbiased variable selection and interaction decision
    • Loh W.Y. Regression trees with unbiased variable selection and interaction decision. Statist. Sinica 12 (2002) 361-386
    • (2002) Statist. Sinica , vol.12 , pp. 361-386
    • Loh, W.Y.1
  • 27
    • 35148880313 scopus 로고    scopus 로고
    • Ripley, B.D., 1997. Classification (update). In: S. Kotz, C.B. Read, D.L. Banks (Eds.), Encyclopedia of Statistical Sciences, vol. 1. Wiley, New York.
  • 28
    • 74049161927 scopus 로고
    • Optimal matching in observational studies
    • Rosenbaum P.R. Optimal matching in observational studies. J. Amer. Statist. Assoc. 84 (1989) 1024-1032
    • (1989) J. Amer. Statist. Assoc. , vol.84 , pp. 1024-1032
    • Rosenbaum, P.R.1
  • 29
    • 35148848261 scopus 로고    scopus 로고
    • Rosenbaum, P.R., 2002. Observational Studies, second ed. Springer, New York.
  • 30
    • 10044222268 scopus 로고    scopus 로고
    • Does matching overcome Lalonde's critique of nonexperimental estimators?
    • Smith J., and Todd P. Does matching overcome Lalonde's critique of nonexperimental estimators?. J. Econometrics 125 1-2 (2005) 305-353
    • (2005) J. Econometrics , vol.125 , Issue.1-2 , pp. 305-353
    • Smith, J.1    Todd, P.2
  • 31
    • 10044272356 scopus 로고    scopus 로고
    • Rejoinder (Dehejia, R. 2005. Practical propensity score matching: a reply to Smith and Todd. J. Econometrics 125(1-2), 355-364)
    • Smith J., and Todd P. Rejoinder (Dehejia, R. 2005. Practical propensity score matching: a reply to Smith and Todd. J. Econometrics 125(1-2), 355-364). J. Econometrics 125 1-2 (2005) 365-375
    • (2005) J. Econometrics , vol.125 , Issue.1-2 , pp. 365-375
    • Smith, J.1    Todd, P.2
  • 32
    • 35148827695 scopus 로고    scopus 로고
    • Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S, fourth ed. Springer, New York.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.