-
1
-
-
19944429077
-
Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors
-
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosciences. 29: 471-187.
-
(2004)
J Biosciences
, vol.29
, pp. 471-187
-
-
Baniwal, S.K.1
Bharti, K.2
Chan, K.Y.3
Fauth, M.4
Ganguli, A.5
Kotak, S.6
Mishra, S.K.7
Nover, L.8
Port, M.9
Scharf, K.D.10
-
2
-
-
33846345430
-
A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis
-
Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143: 251-262.
-
(2007)
Plant Physiol.
, vol.143
, pp. 251-262
-
-
Charng, Y.Y.1
Liu, H.C.2
Liu, N.Y.3
Chi, W.T.4
Wang, C.N.5
Chang, S.H.6
Wang, T.T.7
-
3
-
-
80053102383
-
Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress
-
Chauhan H, Khurana N, Agarwal P, Khurana P (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics. 286: 171-187.
-
(2011)
Mol Genet Genomics.
, vol.286
, pp. 171-187
-
-
Chauhan, H.1
Khurana, N.2
Agarwal, P.3
Khurana, P.4
-
5
-
-
0034143313
-
The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2
-
Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L (2000) The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell. 12: 265-278.
-
(2000)
Plant Cell.
, vol.12
, pp. 265-278
-
-
Döring, P.1
Treuter, E.2
Kistner, C.3
Lyck, R.4
Chen, A.5
Nover, L.6
-
6
-
-
41749085508
-
Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis
-
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008a) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics. 35: 105-118.
-
(2008)
J Genet Genomics
, vol.35
, pp. 105-118
-
-
Guo, J.1
Wu, J.2
Ji, Q.3
Wang, C.4
Luo, L.5
Yuan, Y.6
Wang, Y.7
Wang, J.8
-
7
-
-
51749122943
-
Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana
-
Guo L, Chen S, Liu K, Liu Y, Ni L, Zhang K, Zhang L (2008b) Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Plant Cell Physiol. 49: 1306-1315.
-
(2008)
Plant Cell Physiol
, vol.49
, pp. 1306-1315
-
-
Guo, L.1
Chen, S.2
Liu, K.3
Liu, Y.4
Ni, L.5
Zhang, K.6
Zhang, L.7
-
8
-
-
1242316239
-
Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes
-
Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet. 20: 116-122.
-
(2004)
Trends Genet.
, vol.20
, pp. 116-122
-
-
Leister, D.1
-
9
-
-
75649127974
-
Extensive functional diversification of the Populus glutathione s-transferase supergene family
-
Lan T, Yang ZL, Yang X, Liu YJ, Wang XR, Zeng QY (2009) Extensive functional diversification of the Populus glutathione s-transferase supergene family. Plant Cell. 21: 3749-3766.
-
(2009)
Plant Cell.
, vol.21
, pp. 3749-3766
-
-
Lan, T.1
Yang, Z.L.2
Yang, X.3
Liu, Y.J.4
Wang, X.R.5
Zeng, Q.Y.6
-
10
-
-
36448991500
-
Clustal W and Clustal X version 2.0
-
Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics. 23: 2947-2948.
-
(2007)
Bioinformatics.
, vol.23
, pp. 2947-2948
-
-
Larkin, M.A.1
Blackshields, G.2
Brown, N.3
Chenna, R.4
McGettigan, P.5
McWilliam, H.6
Valentin, F.7
Wallace, I.8
Wilm, A.9
Lopez, R.10
-
11
-
-
0028675574
-
A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance
-
Lee Y, Nagao RT, Key JL (1994) A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell. 6:1889-1897.
-
(1994)
Plant Cell
, vol.6
, pp. 1889-1897
-
-
Lee, Y.1
Nagao, R.T.2
Key, J.L.3
-
12
-
-
33746419309
-
AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis
-
Li C, Chen Q, Gao X, Qi B, Chen N, Xu S, Chen J, Wang X (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China Ser C. 48: 540-550.
-
(2005)
Sci China Ser C.
, vol.48
, pp. 540-550
-
-
Li, C.1
Chen, Q.2
Gao, X.3
Qi, B.4
Chen, N.5
Xu, S.6
Chen, J.7
Wang, X.8
-
13
-
-
62349090721
-
OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor
-
Liu JG, Qin Q, Zhang Z, Peng RH, Xiong A, Chen JM, Yao QH (2009) OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep. 42: 16-21.
-
(2009)
BMB Rep.
, vol.42
, pp. 16-21
-
-
Liu, J.G.1
Qin, Q.2
Zhang, Z.3
Peng, R.H.4
Xiong, A.5
Chen, J.M.6
Yao, Q.H.7
-
14
-
-
0037097984
-
The complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato
-
Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16: 1555-1567.
-
(2002)
Genes Dev.
, vol.16
, pp. 1555-1567
-
-
Mishra, S.K.1
Tripp, J.2
Winkelhaus, S.3
Tschiersch, B.4
Theres, K.5
Nover, L.6
Scharf, K.D.7
-
15
-
-
67649506184
-
Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses
-
Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Bioch. 47: 785-795.
-
(2009)
Plant Physiol Bioch.
, vol.47
, pp. 785-795
-
-
Mittal, D.1
Chakrabarti, S.2
Sarkar, A.3
Singh, A.4
Grover, A.5
-
16
-
-
0032535245
-
Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators
-
Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12: 3788-3796.
-
(1998)
Genes Dev.
, vol.12
, pp. 3788-3796
-
-
Morimoto, R.I.1
-
17
-
-
0034804489
-
Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?
-
Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperone. 6: 177-189.
-
(2001)
Cell Stress Chaperone
, vol.6
, pp. 177-189
-
-
Nover, L.1
Bharti, K.2
Döring, P.3
Mishra, S.K.4
Ganguli, A.5
Scharf, K.D.6
-
18
-
-
0020341083
-
A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene
-
Pelham H, Bienz M (1982) A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J. 1: 1473-1477.
-
(1982)
EMBO J.
, vol.1
, pp. 1473-1477
-
-
Pelham, H.1
Bienz, M.2
-
19
-
-
0031842946
-
HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants
-
Prändl R, Hinderhofer K, Eggers-Schumacher G, SchöfflF (1998) HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet. 258: 269-278.
-
(1998)
Mol Gen Genet.
, vol.258
, pp. 269-278
-
-
Prändl, R.1
Hinderhofer, K.2
Eggers-Schumacher, G.3
Schöffl, F.4
-
20
-
-
0034119621
-
Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis
-
Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 12: 479-492.
-
(2000)
Plant Cell.
, vol.12
, pp. 479-492
-
-
Queitsch, C.1
Hong, S.W.2
Vierling, E.3
Lindquist, S.4
-
21
-
-
0023375195
-
The neighbor-joining method: a new method for reconstructing phylogenetic trees
-
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4: 406-425.
-
(1987)
Mol Biol Evol.
, vol.4
, pp. 406-425
-
-
Saitou, N.1
Nei, M.2
-
22
-
-
34548229943
-
Characterization of genes with tissue-specific differential expression patterns in Populus
-
Segerman B, Jansson S, Karlsson J (2007) Characterization of genes with tissue-specific differential expression patterns in Populus. Tree Genet Genomes. 3: 351-362.
-
(2007)
Tree Genet Genomes.
, vol.3
, pp. 351-362
-
-
Segerman, B.1
Jansson, S.2
Karlsson, J.3
-
23
-
-
84856613886
-
The plant heat stress transcription factor (Hsf) family: structure, function and evolution
-
Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. BBA-Gene Regul Mech. 1819: 104-119.
-
(2012)
BBA-Gene Regul Mech.
, vol.1819
, pp. 104-119
-
-
Scharf, K.D.1
Berberich, T.2
Ebersberger, I.3
Nover, L.4
-
24
-
-
37749025808
-
A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis
-
Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Koskull Döring V (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53: 264-274.
-
(2008)
Plant J.
, vol.53
, pp. 264-274
-
-
Schramm, F.1
Larkindale, J.2
Kiehlmann, E.3
Ganguli, A.4
Englich, G.5
Vierling, E.6
Koskull Döring, V.7
-
25
-
-
75649125258
-
Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice
-
Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell. 21: 4031-4043.
-
(2009)
Plant Cell
, vol.21
, pp. 4031-4043
-
-
Shim, D.1
Hwang, J.U.2
Lee, J.3
Lee, S.4
Choi, Y.5
An, G.6
Martinoia, E.7
Lee, Y.8
-
26
-
-
4644282569
-
A Populus EST resource for plant functional genomics
-
Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA. 101:13951-13956.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 13951-13956
-
-
Sterky, F.1
Bhalerao, R.R.2
Unneberg, P.3
Segerman, B.4
Nilsson, P.5
Brunner, A.M.6
Charbonnel-Campaa, L.7
Lindvall, J.J.8
Tandre, K.9
Strauss, S.H.10
-
27
-
-
34347265817
-
Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways
-
Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC genomics. 8: 125.
-
(2007)
BMC genomics
, vol.8
, pp. 125
-
-
Swindell, W.R.1
Huebner, M.2
Weber, A.P.3
-
28
-
-
33748760611
-
The genome of black cottonwood
-
Tuskan GA, Di Fazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, de Pamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui H, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (torr. & Gray). Science. 313: 1596-1604.
-
(2006)
Populus trichocarpa (torr & Gray). Science.
, vol.313
, pp. 1596-1604
-
-
Tuskan, G.A.1
Di Fazio, S.2
Jansson, S.3
Bohlmann, J.4
Grigoriev, I.5
Hellsten, U.6
Putnam, N.7
Ralph, S.8
Rombauts, S.9
Salamov, A.10
Schein, J.11
Sterck, L.12
Aerts, A.13
Bhalerao, R.R.14
Bhalerao, R.P.15
Blaudez, D.16
Boerjan, W.17
Brun, A.18
Brunner, A.19
Busov, V.20
Campbell, M.21
Carlson, J.22
Chalot, M.23
Chapman, J.24
Chen, G.-L.25
Cooper, D.26
Coutinho, P.M.27
Couturier, J.28
Covert, S.29
Cronk, Q.30
Cunningham, R.31
Davis, J.32
Degroeve, S.33
Déjardin, A.34
de Pamphilis, C.35
Detter, J.36
Dirks, B.37
Dubchak, I.38
Duplessis, S.39
Ehlting, J.40
Ellis, B.41
Gendler, K.42
Goodstein, D.43
Gribskov, M.44
Grimwood, J.45
Groover, A.46
Gunter, L.47
Hamberger, B.48
Heinze, B.49
Helariutta, Y.50
Henrissat, B.51
Holligan, D.52
Holt, R.53
Huang, W.54
Islam-Faridi, N.55
Jones, S.56
Jones-Rhoades, M.57
Jorgensen, R.58
Joshi, C.59
Kangasjärvi, J.60
Karlsson, J.61
Kelleher, C.62
Kirkpatrick, R.63
Kirst, M.64
Kohler, A.65
Kalluri, U.66
Larimer, F.67
Leebens-Mack, J.68
Leplé, J.C.69
Locascio, P.70
Lou, Y.71
Lucas, S.72
Martin, F.73
Montanini, B.74
Napoli, C.75
Nelson, D.R.76
Nelson, C.77
Nieminen, K.78
Nilsson, O.79
Pereda, V.80
Peter, G.81
Philippe, R.82
Pilate, G.83
Poliakov, A.84
Razumovskaya, J.85
Richardson, P.86
Rinaldi, C.87
Ritland, K.88
Rouzé, P.89
Ryaboy, D.90
Schmutz, J.91
Schrader, J.92
Segerman, B.93
Shin, H.94
Siddiqui, H.95
Sterky, F.96
Terry, A.97
Tsai, C.J.98
Uberbacher, E.99
Unneberg, P.100
Vahala, J.101
Wall, K.102
Wessler, S.103
Yang, G.104
Yin, T.105
Douglas, C.106
Marra, M.107
Sandberg, G.108
Van de Peer, Y.109
Rokhsar, D.110
more..
-
29
-
-
0034671866
-
The origins of genomic duplications in Arabidopsis
-
Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science. 290: 2114-2117.
-
(2000)
Science.
, vol.290
, pp. 2114-2117
-
-
Vision, T.J.1
Brown, D.G.2
Tanksley, S.D.3
-
30
-
-
84860340884
-
Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula
-
Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y (2012) Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep. 39: 1877-1886.
-
(2012)
Mol Biol Rep.
, vol.39
, pp. 1877-1886
-
-
Wang, F.1
Dong, Q.2
Jiang, H.3
Zhu, S.4
Chen, B.5
Xiang, Y.6
-
31
-
-
60249102826
-
Expansion and diversification of the Populus R2R3-MYB family of transcription factors
-
Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 149: 981-993.
-
(2009)
Plant Physiol.
, vol.149
, pp. 981-993
-
-
Wilkins, O.1
Nahal, H.2
Foong, J.3
Provart, N.J.4
Campbell, M.M.5
-
32
-
-
0029564954
-
Heat shock transcription factors: structure and regulation
-
Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Bl. 11: 441-169.
-
(1995)
Annu Rev Cell Dev Bl.
, vol.11
, pp. 441-169
-
-
Wu, C.1
|