메뉴 건너뛰기




Volumn 44, Issue 1, 2014, Pages 76-87

An efficient neural network based method for medical image segmentation

Author keywords

Artificial neural network (ANN); Computer aided diagnosis (CAD) systems; Medical image segmentation; Pattern recognition

Indexed keywords

BREAST ULTRASOUND IMAGES; COMPUTER AIDED DIAGNOSIS(CAD); INITIAL SEGMENTATION; MOVING AVERAGES; SEGMENTATION RESULTS; SELF-ORGANIZING MAP NETWORKS; SUPERVISED NEURAL NETWORKS; X RAY COMPUTERIZED TOMOGRAPHY;

EID: 84888588407     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2013.10.029     Document Type: Article
Times cited : (65)

References (30)
  • 4
    • 0032769863 scopus 로고    scopus 로고
    • Fast, accurate, and reproducible automatic segmentation of the brain in T1 weighted volume MRI data
    • Lemieux L., Hagemann G., Krakow K., Woermann F.G. Fast, accurate, and reproducible automatic segmentation of the brain in T1 weighted volume MRI data. Magn. Reson. Med. 1999, 42:127-135.
    • (1999) Magn. Reson. Med. , vol.42 , pp. 127-135
    • Lemieux, L.1    Hagemann, G.2    Krakow, K.3    Woermann, F.G.4
  • 5
    • 0034849062 scopus 로고    scopus 로고
    • Segmentation of medical images using adaptive region growing
    • Pohle R., Toennies K.D. Segmentation of medical images using adaptive region growing. Proc. SPIE-Med. Imaging 2001, 4322:1337-1346.
    • (2001) Proc. SPIE-Med. Imaging , vol.4322 , pp. 1337-1346
    • Pohle, R.1    Toennies, K.D.2
  • 6
    • 0033723216 scopus 로고    scopus 로고
    • Automated extraction of bronchus from 3D CT images of lung based on genetic algorithm and 3D region growing
    • Law T.Y., Heng P.A. Automated extraction of bronchus from 3D CT images of lung based on genetic algorithm and 3D region growing. Proc. SPIE-Med. Imaging 2000, 3979:906-916.
    • (2000) Proc. SPIE-Med. Imaging , vol.3979 , pp. 906-916
    • Law, T.Y.1    Heng, P.A.2
  • 7
    • 50149110607 scopus 로고    scopus 로고
    • A new segmentation system for brain MR images based on fuzzy techniques
    • Kannan S.R. A new segmentation system for brain MR images based on fuzzy techniques. J. Appl. Soft Comput. 2008, 8:1599-1606.
    • (2008) J. Appl. Soft Comput. , vol.8 , pp. 1599-1606
    • Kannan, S.R.1
  • 8
    • 31544461548 scopus 로고    scopus 로고
    • Fuzzy c-means clustering with spatial information for image segmentation
    • Chuang K.S., et al. Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 2006, 30:9-15.
    • (2006) Comput. Med. Imaging Graph. , vol.30 , pp. 9-15
    • Chuang, K.S.1
  • 9
    • 0031353193 scopus 로고    scopus 로고
    • A Tabu search-based algorithm for the fuzzy clustering problem
    • Al-Sultan K.S., Fedjki C.A. A Tabu search-based algorithm for the fuzzy clustering problem. Pattern Recognition 1997, 30:2023-2030.
    • (1997) Pattern Recognition , vol.30 , pp. 2023-2030
    • Al-Sultan, K.S.1    Fedjki, C.A.2
  • 10
    • 0036489378 scopus 로고    scopus 로고
    • Modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    • Ahmed M.N., et al. Modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 2002, 21:193-199.
    • (2002) IEEE Trans. Med. Imaging , vol.21 , pp. 193-199
    • Ahmed, M.N.1
  • 11
    • 33746885878 scopus 로고    scopus 로고
    • Ultrasound image segmentation: a survey
    • Noble J., Boukerroui D. Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 2006, 25:987-1010.
    • (2006) IEEE Trans. Med. Imaging , vol.25 , pp. 987-1010
    • Noble, J.1    Boukerroui, D.2
  • 12
    • 77957910572 scopus 로고    scopus 로고
    • Medical image analysis with artificial neural networks
    • Jiang J., Trundle P., Ren J. Medical image analysis with artificial neural networks. Comput. Med. Imaging Graph. 2010, 34:617-631.
    • (2010) Comput. Med. Imaging Graph. , vol.34 , pp. 617-631
    • Jiang, J.1    Trundle, P.2    Ren, J.3
  • 13
    • 36048967893 scopus 로고    scopus 로고
    • Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures
    • Powell S., Magnotta V.A., Johnson H., Jammalamadaka V.K., Pierson R., Andreasen N.C. Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. NeuroImage 2008, 39:238-247.
    • (2008) NeuroImage , vol.39 , pp. 238-247
    • Powell, S.1    Magnotta, V.A.2    Johnson, H.3    Jammalamadaka, V.K.4    Pierson, R.5    Andreasen, N.C.6
  • 14
    • 34748838915 scopus 로고    scopus 로고
    • Exploiting the self-organizing map for medical image segmentation
    • 20th IEEE International Symposium on Computer-Based Medical Systems
    • P.L. Chang, W.G. Teng, Exploiting the self-organizing map for medical image segmentation, in: 20th IEEE International Symposium on Computer-Based Medical Systems, vol. 7, 2007, pp. 281-288.
    • (2007) , vol.7 , pp. 281-288
    • Chang, P.L.1    Teng, W.G.2
  • 15
    • 34748881884 scopus 로고    scopus 로고
    • Ultrasound image segmentation by using wavelet transform and self-organizing neural network
    • Iscan Z., Kurnaz M.N., Dokur Z., Olmez T. Ultrasound image segmentation by using wavelet transform and self-organizing neural network. Neural Inform. Process.-Lett. Rev. 2006, 10(8-9):183-191.
    • (2006) Neural Inform. Process.-Lett. Rev. , vol.10 , Issue.8-9 , pp. 183-191
    • Iscan, Z.1    Kurnaz, M.N.2    Dokur, Z.3    Olmez, T.4
  • 16
    • 0035420133 scopus 로고    scopus 로고
    • Medical image segmentation using a contextual constraint-based Hopfield neural cube
    • Chang C.Y., Chung P.C. Medical image segmentation using a contextual constraint-based Hopfield neural cube. Image Vision Comput. 2001, 19:669-678.
    • (2001) Image Vision Comput. , vol.19 , pp. 669-678
    • Chang, C.Y.1    Chung, P.C.2
  • 17
    • 0030215237 scopus 로고    scopus 로고
    • Application of competitive Hopfield neural network to medical image segmentation
    • Cheng K.S., Lin J.S., Mao C.W. Application of competitive Hopfield neural network to medical image segmentation. IEEE Trans. Med. Imaging 1996, 15:560-561.
    • (1996) IEEE Trans. Med. Imaging , vol.15 , pp. 560-561
    • Cheng, K.S.1    Lin, J.S.2    Mao, C.W.3
  • 18
    • 73449145287 scopus 로고    scopus 로고
    • Automatic image segmentation algorithm based on PCNN and fuzzy mutual information, in: IEEE International Conference on Computer and Information Technology
    • Z. Xiao, J. Shi, Q. Chang, Automatic image segmentation algorithm based on PCNN and fuzzy mutual information, in: IEEE International Conference on Computer and Information Technology, 2009, pp. 241-245.
    • (2009) , pp. 241-245
    • Xiao, Z.1    Shi, J.2    Chang, Q.3
  • 20
    • 67349146823 scopus 로고    scopus 로고
    • Medical image segmentation with transform and moment based features and incremental supervised neural network
    • Iscan Z., Yuksel A., Dokur Z., Korurek M., Olmez T. Medical image segmentation with transform and moment based features and incremental supervised neural network. Digital Signal Process. 2009, 19:890-901.
    • (2009) Digital Signal Process. , vol.19 , pp. 890-901
    • Iscan, Z.1    Yuksel, A.2    Dokur, Z.3    Korurek, M.4    Olmez, T.5
  • 21
    • 77953085509 scopus 로고    scopus 로고
    • Adaptive FIR neural model for centroid learning in self-organizing maps
    • Tucci M., Raugi M. Adaptive FIR neural model for centroid learning in self-organizing maps. IEEE Trans. Neural Networks 2010, 21.
    • (2010) IEEE Trans. Neural Networks , vol.21
    • Tucci, M.1    Raugi, M.2
  • 23
    • 0038398643 scopus 로고    scopus 로고
    • Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions
    • Madabhushi A., Metaxas D.N. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans. Med. Imaging 2003, 22(2):155-169.
    • (2003) IEEE Trans. Med. Imaging , vol.22 , Issue.2 , pp. 155-169
    • Madabhushi, A.1    Metaxas, D.N.2
  • 24
    • 84888603341 scopus 로고    scopus 로고
    • http://www.drgdiaz.com/ascitis_bladder.sthml.
  • 25
    • 84888629239 scopus 로고    scopus 로고
    • http://www.bic.mni.mcgill.ca/brainweb/.
  • 27
    • 33750843927 scopus 로고    scopus 로고
    • Generalized overlap measures for evaluation and validation in medical image analysis
    • Crum W.R., Camara O., Hill D.L.G. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 2006, 25(11):1451-1461.
    • (2006) IEEE Trans. Med. Imaging , vol.25 , Issue.11 , pp. 1451-1461
    • Crum, W.R.1    Camara, O.2    Hill, D.L.G.3
  • 28
    • 77957938677 scopus 로고    scopus 로고
    • A novel automatic seed point selection algorithm for breast ultrasound images
    • in: 19th International Conference on Pattern Recognition
    • J. Shan, H.D. Cheng, Y. Wang, A novel automatic seed point selection algorithm for breast ultrasound images, in: 19th International Conference on Pattern Recognition, 2008, pp. 1-4.
    • (2008) , pp. 1-4
    • Shan, J.1    Cheng, H.D.2    Wang, Y.3
  • 29
    • 78751612609 scopus 로고    scopus 로고
    • Prostate boundary detection in ultrasound images using biologically-inspired spiking neural network
    • Hassanien A., Al-Qaheri H., El-Dahshan E.A. prostate boundary detection in ultrasound images using biologically-inspired spiking neural network. Appl. Soft Comput. 2011, 11(2):2035-2041.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2035-2041
    • Hassanien, A.1    Al-Qaheri, H.2    El-Dahshan, E.A.3
  • 30
    • 84869489087 scopus 로고    scopus 로고
    • Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural network
    • Hassanien A., Kim T. Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural network. J. Appl. Logic 2012, 10(4):277-284.
    • (2012) J. Appl. Logic , vol.10 , Issue.4 , pp. 277-284
    • Hassanien, A.1    Kim, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.