메뉴 건너뛰기




Volumn 18, Issue 12, 2013, Pages 673-679

Chlamydia, cyanobiont, or host: Who was on top in the ménage à trois?

Author keywords

Endosymbiosis; Metabolite transport; Plastid evolution

Indexed keywords

ARCHAEPLASTIDA; CHLAMYDIA; EMBRYOPHYTA; EUKARYOTA; RHODOPHYTA;

EID: 84888437183     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2013.09.006     Document Type: Review
Times cited : (32)

References (47)
  • 1
    • 79951774451 scopus 로고    scopus 로고
    • Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes
    • Chan C.X., et al. Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr. Biol. 2011, 21:328-333.
    • (2011) Curr. Biol. , vol.21 , pp. 328-333
    • Chan, C.X.1
  • 2
    • 22744445156 scopus 로고    scopus 로고
    • Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes
    • Rodriguez-Ezpeleta N., et al. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol. 2005, 15:1325-1330.
    • (2005) Curr. Biol. , vol.15 , pp. 1325-1330
    • Rodriguez-Ezpeleta, N.1
  • 3
    • 1942469414 scopus 로고    scopus 로고
    • A molecular timeline for the origin of photosynthetic eukaryotes
    • Yoon H.S., et al. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 2004, 21:809-818.
    • (2004) Mol. Biol. Evol. , vol.21 , pp. 809-818
    • Yoon, H.S.1
  • 4
    • 27944503381 scopus 로고    scopus 로고
    • A plastid in the making: evidence for a second primary endosymbiosis
    • Marin B., et al. A plastid in the making: evidence for a second primary endosymbiosis. Protist 2005, 156:425-432.
    • (2005) Protist , vol.156 , pp. 425-432
    • Marin, B.1
  • 5
    • 42049092254 scopus 로고    scopus 로고
    • Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes
    • Nowack E.C.M., et al. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr. Biol. 2008, 18:410-418.
    • (2008) Curr. Biol. , vol.18 , pp. 410-418
    • Nowack, E.C.M.1
  • 6
    • 66149125202 scopus 로고    scopus 로고
    • A single origin of the photosynthetic organelle in different Paulinella lineages
    • Yoon H.S., et al. A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol. Biol. 2009, 9:98.
    • (2009) BMC Evol. Biol. , vol.9 , pp. 98
    • Yoon, H.S.1
  • 7
    • 0032516147 scopus 로고    scopus 로고
    • Gene transfer to the nucleus and the evolution of chloroplasts
    • Martin W., et al. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 1998, 393:162-165.
    • (1998) Nature , vol.393 , pp. 162-165
    • Martin, W.1
  • 8
    • 0742323538 scopus 로고    scopus 로고
    • Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes
    • Timmis J.N., et al. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 2004, 5:123-135.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 123-135
    • Timmis, J.N.1
  • 9
    • 0242669385 scopus 로고    scopus 로고
    • Direct measurement of the transfer rate of chloroplast DNA into the nucleus
    • Huang C.Y., et al. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 2003, 422:72-76.
    • (2003) Nature , vol.422 , pp. 72-76
    • Huang, C.Y.1
  • 10
    • 33845302595 scopus 로고    scopus 로고
    • Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus
    • Stegemann S., Bock R. Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 2006, 18:2869-2878.
    • (2006) Plant Cell , vol.18 , pp. 2869-2878
    • Stegemann, S.1    Bock, R.2
  • 11
    • 0042760348 scopus 로고    scopus 로고
    • High-frequency gene transfer from the chloroplast genome to the nucleus
    • Stegemann S., et al. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:8828-8833.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 8828-8833
    • Stegemann, S.1
  • 12
    • 67649755680 scopus 로고    scopus 로고
    • Mitochondrial and plastid evolution in eukaryotes: an outsiders' perspective
    • Gross J., Bhattacharya D. Mitochondrial and plastid evolution in eukaryotes: an outsiders' perspective. Nat. Rev. Genet. 2009, 10:495-505.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 495-505
    • Gross, J.1    Bhattacharya, D.2
  • 13
    • 84857242898 scopus 로고    scopus 로고
    • Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants
    • Price D.C., et al. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 2012, 335:843-847.
    • (2012) Science , vol.335 , pp. 843-847
    • Price, D.C.1
  • 14
    • 84873085850 scopus 로고    scopus 로고
    • Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis
    • Facchinelli F., et al. Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. Planta 2013, 237:637-651.
    • (2013) Planta , vol.237 , pp. 637-651
    • Facchinelli, F.1
  • 15
    • 57749121322 scopus 로고    scopus 로고
    • Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae
    • Linka M., et al. Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. Plant Physiol. 2008, 148:1487-1496.
    • (2008) Plant Physiol. , vol.148 , pp. 1487-1496
    • Linka, M.1
  • 16
    • 84888434265 scopus 로고
    • The metabolite transfer in Cyanophora paradoxa and its cyanelles
    • Schlichting R., et al. The metabolite transfer in Cyanophora paradoxa and its cyanelles. Endocyt. Cell Res. 1994, 10:81-85.
    • (1994) Endocyt. Cell Res. , vol.10 , pp. 81-85
    • Schlichting, R.1
  • 17
    • 84874673466 scopus 로고    scopus 로고
    • Gene transfer from bacteria and Archaea facilitated evolution of an extremophilic eukaryote
    • Schönknecht G., et al. Gene transfer from bacteria and Archaea facilitated evolution of an extremophilic eukaryote. Science 2013, 339:1207-1210.
    • (2013) Science , vol.339 , pp. 1207-1210
    • Schönknecht, G.1
  • 18
    • 79955583888 scopus 로고    scopus 로고
    • Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism
    • Weber A.P.M., Linka N. Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu. Rev. Plant Biol. 2011, 62:53-77.
    • (2011) Annu. Rev. Plant Biol. , vol.62 , pp. 53-77
    • Weber, A.P.M.1    Linka, N.2
  • 19
    • 84888427802 scopus 로고    scopus 로고
    • Evolutionary integration of chloroplast metabolism with the metabolic networks of the cells
    • Springer, R. Burnap, W. Vermaas (Eds.)
    • Linka M., Weber A.P. Evolutionary integration of chloroplast metabolism with the metabolic networks of the cells. Functional Genomics and Evolution of Photosynthetic Systems 2012, 199-224. Springer. R. Burnap, W. Vermaas (Eds.).
    • (2012) Functional Genomics and Evolution of Photosynthetic Systems , pp. 199-224
    • Linka, M.1    Weber, A.P.2
  • 20
    • 79952831697 scopus 로고    scopus 로고
    • The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis
    • Ball S., et al. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J. Exp. Bot. 2011, 62:1775-1801.
    • (2011) J. Exp. Bot. , vol.62 , pp. 1775-1801
    • Ball, S.1
  • 21
    • 39749173052 scopus 로고    scopus 로고
    • Metabolic symbiosis and the birth of the plant kingdom
    • Deschamps P., et al. Metabolic symbiosis and the birth of the plant kingdom. Mol. Biol. Evol. 2008, 25:536-548.
    • (2008) Mol. Biol. Evol. , vol.25 , pp. 536-548
    • Deschamps, P.1
  • 22
    • 54549094650 scopus 로고    scopus 로고
    • The relocation of starch metabolism to chloroplasts: when, why and how
    • Deschamps P., et al. The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant. Sci. 2008, 13:574-582.
    • (2008) Trends Plant. Sci. , vol.13 , pp. 574-582
    • Deschamps, P.1
  • 23
    • 45849090408 scopus 로고    scopus 로고
    • Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts
    • Deschamps P., et al. Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 2008, 178:2373-2387.
    • (2008) Genetics , vol.178 , pp. 2373-2387
    • Deschamps, P.1
  • 24
    • 78649368324 scopus 로고    scopus 로고
    • Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis
    • Colleoni C., et al. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Mol. Biol. Evol. 2010, 27:2691-2701.
    • (2010) Mol. Biol. Evol. , vol.27 , pp. 2691-2701
    • Colleoni, C.1
  • 25
    • 33645081961 scopus 로고    scopus 로고
    • Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor
    • Weber A.P.M., et al. Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot. Cell 2006, 5:609-612.
    • (2006) Eukaryot. Cell , vol.5 , pp. 609-612
    • Weber, A.P.M.1
  • 26
    • 33750007916 scopus 로고    scopus 로고
    • Nucleotide-sugar transporters: structure, function and roles in vivo
    • Handford M., et al. Nucleotide-sugar transporters: structure, function and roles in vivo. Braz. J. Med. Biol. Res. 2006, 39:1149-1158.
    • (2006) Braz. J. Med. Biol. Res. , vol.39 , pp. 1149-1158
    • Handford, M.1
  • 27
    • 0038193967 scopus 로고    scopus 로고
    • The nucleotide-sugar transporter family: a phylogenetic approach
    • Martinez-Duncker I., et al. The nucleotide-sugar transporter family: a phylogenetic approach. Biochimie 2003, 85:245-260.
    • (2003) Biochimie , vol.85 , pp. 245-260
    • Martinez-Duncker, I.1
  • 28
    • 84874530353 scopus 로고    scopus 로고
    • Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis?
    • Ball S.G., et al. Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis?. Plant Cell 2013, 25:7-21.
    • (2013) Plant Cell , vol.25 , pp. 7-21
    • Ball, S.G.1
  • 29
    • 48349126261 scopus 로고    scopus 로고
    • Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes
    • Becker B., et al. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol. Biol. 2008, 8:203.
    • (2008) BMC Evol. Biol. , vol.8 , pp. 203
    • Becker, B.1
  • 30
    • 0037224286 scopus 로고    scopus 로고
    • Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast
    • Brinkman F.S.L., et al. Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res. 2002, 12:1159-1167.
    • (2002) Genome Res. , vol.12 , pp. 1159-1167
    • Brinkman, F.S.L.1
  • 31
    • 80055122428 scopus 로고    scopus 로고
    • Unity in variety: the pan-genome of the Chlamydiae
    • Collingro A., et al. Unity in variety: the pan-genome of the Chlamydiae. Mol. Biol. Evol. 2011, 28:3253-3270.
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 3253-3270
    • Collingro, A.1
  • 32
    • 2342423344 scopus 로고    scopus 로고
    • Illuminating the evolutionary history of Chlamydiae
    • Horn M., et al. Illuminating the evolutionary history of Chlamydiae. Science 2004, 304:728-730.
    • (2004) Science , vol.304 , pp. 728-730
    • Horn, M.1
  • 33
    • 39549122214 scopus 로고    scopus 로고
    • Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?
    • Huang J.L., Gogarten J.P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?. Genome Biol. 2007, 8:R99.
    • (2007) Genome Biol. , vol.8
    • Huang, J.L.1    Gogarten, J.P.2
  • 34
    • 48249125417 scopus 로고    scopus 로고
    • Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions
    • Moustafa A., et al. Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS ONE 2008, 3:e2205.
    • (2008) PLoS ONE , vol.3
    • Moustafa, A.1
  • 35
    • 77249157747 scopus 로고    scopus 로고
    • Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses
    • Suzuki K., Miyagishima S. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol. Biol. Evol. 2010, 27:581-590.
    • (2010) Mol. Biol. Evol. , vol.27 , pp. 581-590
    • Suzuki, K.1    Miyagishima, S.2
  • 36
    • 40849124801 scopus 로고    scopus 로고
    • Host origin of plastid solute transporters in the first photosynthetic eukaryotes
    • Tyra H.M., et al. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol. 2007, 8:R212.
    • (2007) Genome Biol. , vol.8
    • Tyra, H.M.1
  • 37
    • 84888437974 scopus 로고    scopus 로고
    • Assessing the bacterial contribution to the plastid proteome
    • Qiu H., et al. Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci. 2013, 18:680-687.
    • (2013) Trends Plant Sci. , vol.18 , pp. 680-687
    • Qiu, H.1
  • 38
    • 84873094054 scopus 로고    scopus 로고
    • The metabolite transporters of the plastid envelope: an update
    • Facchinelli F., Weber A.P. The metabolite transporters of the plastid envelope: an update. Front Plant Sci. 2011, 2:50.
    • (2011) Front Plant Sci. , vol.2 , pp. 50
    • Facchinelli, F.1    Weber, A.P.2
  • 39
    • 0027138425 scopus 로고
    • The cyanelles (organelles of a low evolutionary scale) possess a phosphate translocator and a glucose carrier in Cyanophora paradoxa
    • Schlichting R., Bothe H. The cyanelles (organelles of a low evolutionary scale) possess a phosphate translocator and a glucose carrier in Cyanophora paradoxa. Bot. Acta 1993, 106:428-434.
    • (1993) Bot. Acta , vol.106 , pp. 428-434
    • Schlichting, R.1    Bothe, H.2
  • 40
    • 0036210602 scopus 로고    scopus 로고
    • Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC)
    • Schwöppe C., et al. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J. Bacteriol. 2002, 184:2108-2115.
    • (2002) J. Bacteriol. , vol.184 , pp. 2108-2115
    • Schwöppe, C.1
  • 42
    • 0344405757 scopus 로고    scopus 로고
    • Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes
    • Linka N., et al. Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene 2003, 306:27-35.
    • (2003) Gene , vol.306 , pp. 27-35
    • Linka, N.1
  • 43
    • 84856372043 scopus 로고    scopus 로고
    • Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches
    • Nguyen B.D., Valdivia R.H. Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1263-1268.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1263-1268
    • Nguyen, B.D.1    Valdivia, R.H.2
  • 44
    • 84859326308 scopus 로고    scopus 로고
    • Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing
    • S411
    • Harris S.R., et al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat. Genet. 2012, 44:413-419. S411.
    • (2012) Nat. Genet. , vol.44 , pp. 413-419
    • Harris, S.R.1
  • 45
    • 53849114721 scopus 로고    scopus 로고
    • Chlamydiae as Symbionts in Eukaryotes
    • Horn M. Chlamydiae as Symbionts in Eukaryotes. Annu. Rev. Microbiol. 2008, 62:113-131.
    • (2008) Annu. Rev. Microbiol. , vol.62 , pp. 113-131
    • Horn, M.1
  • 46
    • 77957265525 scopus 로고    scopus 로고
    • Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles
    • Matsuo J., et al. Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles. Res. Microbiol. 2010, 161:711-719.
    • (2010) Res. Microbiol. , vol.161 , pp. 711-719
    • Matsuo, J.1
  • 47
    • 58149513082 scopus 로고    scopus 로고
    • Revaluating the evolution of the Toc and Tic protein translocons
    • Gross J., Bhattacharya D. Revaluating the evolution of the Toc and Tic protein translocons. Trends Plant Sci. 2009, 14:13-20.
    • (2009) Trends Plant Sci. , vol.14 , pp. 13-20
    • Gross, J.1    Bhattacharya, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.