메뉴 건너뛰기




Volumn 84, Issue PART 1, 2012, Pages 193-202

Adaptive K-means clustering to handle heterogeneous data using basic rough set theory

Author keywords

Classification; Cluster; Crisp boundaries; Heterogeneous data; Uncertainty

Indexed keywords

CLUSTER; CLUSTER ANALYSIS TECHNIQUE; HETEROGENEOUS DATA; INCOMPLETE INFORMATION; K-MEANS ALGORITHM; K-MEANS CLUSTERING; STATISTICAL CLUSTERING TECHNIQUE; UNCERTAINTY;

EID: 84888414617     PISSN: 18678211     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-27299-8_21     Document Type: Conference Paper
Times cited : (5)

References (19)
  • 3
    • 0034133769 scopus 로고    scopus 로고
    • Clustering categorical data: An approach based on dynamical systems
    • Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical data: an approach based on dynamical systems. The Very Large Data Bases Journal 8(3-4), 222-236 (2000)
    • (2000) The Very Large Data Bases Journal , vol.8 , Issue.3-4 , pp. 222-236
    • Gibson, D.1    Kleinberg, J.2    Raghavan, P.3
  • 4
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • Guha, S., Rastogi, R., Shim, K.: ROCK: a robust clustering algorithm for categorical attributes. Information Systems 25(5), 345-366 (2000)
    • (2000) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 7
    • 0001138328 scopus 로고
    • Algorithm AS136: A K-Means Clustering Algorithm
    • Hartigan, J.A., Wong, M.A.: Algorithm AS136: A K-Means Clustering Algorithm. Applied Statistics 28, 100-108 (1979)
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 8
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical value
    • Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical value. Data Mining and Knowledge Discovery 2(3), 283-304 (1998)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 11
    • 0029245943 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation
    • Krishnapuram, R., Frigui, H., Nasraoui, O.: Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Transactions on Fuzzy Systems 3(1), 29-60 (1995)
    • (1995) IEEE Transactions On Fuzzy Systems , vol.3 , Issue.1 , pp. 29-60
    • Krishnapuram, R.1    Frigui, H.2    Nasraoui, O.3
  • 13
    • 0027641106 scopus 로고    scopus 로고
    • A Methodology for large scale R&D planning based on cluster analysis
    • Mathieu, R., Gibson, J.: A Methodology for large scale R&D planning based on cluster analysis. IEEE Transactions on Engineering Management 40(3), 283-292 (2004)
    • (2004) IEEE Transactions On Engineering Management , vol.40 , Issue.3 , pp. 283-292
    • Mathieu, R.1    Gibson, J.2
  • 14
    • 34548666399 scopus 로고    scopus 로고
    • MMR: An algorithm for clustering categorical data using Rough Set Theory
    • Parmar, D., Teresa, W., Jennifer, B.: MMR: An algorithm for clustering categorical data using Rough Set Theory. Data & Knowledge Engineering, 879-893 (2007)
    • (2007) Data & Knowledge Engineering , pp. 879-893
    • Parmar, D.1    Teresa, W.2    Jennifer, B.3
  • 18
    • 1842587592 scopus 로고    scopus 로고
    • Cluster analysis of gene expression data based on selfsplitting and merging competitive learning
    • Wu, S., Liew, A., Yang, M.: Cluster analysis of gene expression data based on selfsplitting and merging competitive learning. IEEE Transactions on Information Technology in Bio Medicine 8(1), 5-15 (2004)
    • (2004) IEEE Transactions On Information Technology In Bio Medicine , vol.8 , Issue.1 , pp. 5-15
    • Wu, S.1    Liew, A.2    Yang, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.