메뉴 건너뛰기




Volumn , Issue , 2013, Pages 42-51

A semi-supervised learning approach to integrated salient risk features for bone diseases

Author keywords

Bone fracture; Deep belief net (DBN); Integrated features; Osteoporosis; Restricted boltzmann machine (RBM); Risk factors analysis (RFA)

Indexed keywords

BONE FRACTURE; DEEP BELIEF NET (DBN); INTEGRATED FEATURES; OSTEOPOROSIS; RESTRICTED BOLTZMANN MACHINE; RISK FACTORS;

EID: 84888162455     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2506583.2506593     Document Type: Conference Paper
Times cited : (2)

References (32)
  • 1
    • 84888144349 scopus 로고    scopus 로고
    • http://www.shef.ac.uk/FRAX/.
  • 2
    • 84888184763 scopus 로고    scopus 로고
    • http://www.sof.ucsf.edu/interface/.
  • 3
  • 4
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209(1):237-260, 1998.
    • (1998) Theoretical Computer Science , vol.209 , Issue.1 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 5
    • 60349113481 scopus 로고    scopus 로고
    • Introduction to the use of regression models in epidemiology
    • R. Bender. Introduction to the use of regression models in epidemiology. Methods Mol Biol, 471:179-195, 2009.
    • (2009) Methods Mol Biol , vol.471 , pp. 179-195
    • Bender, R.1
  • 9
  • 10
    • 1842714928 scopus 로고    scopus 로고
    • Understanding tuberculosis epidemiology using structured statistical models
    • L. Getoor, J. T. Rhee, D. Koller, and P. Small. Understanding tuberculosis epidemiology using structured statistical models. Artificial Intelligence in Medicine, 30(3):233-256, 2004.
    • (2004) Artificial Intelligence in Medicine , vol.30 , Issue.3 , pp. 233-256
    • Getoor, L.1    Rhee, J.T.2    Koller, D.3    Small, P.4
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. science, 2006.
    • (2006) Science
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 49949097778 scopus 로고    scopus 로고
    • Efficient estimation of osteoporosis using arti-cial neural networks
    • IECON 2007. 33rd Annual Conference of the IEEE, IEEE
    • G. Lemineur, R. Harba, N. Kilic, O. Ucan, O. Osman, and L. Benhamou. Efficient estimation of osteoporosis using arti-cial neural networks. In Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pages 3039-3044. IEEE, 2007.
    • (2007) Industrial Electronics Society, 2007 , pp. 3039-3044
    • Lemineur, G.1    Harba, R.2    Kilic, N.3    Ucan, O.4    Osman, O.5    Benhamou, L.6
  • 21
    • 42149084992 scopus 로고    scopus 로고
    • Modeling and analysis of disease and risk factors through learning bayesian networks from observational data
    • J. Li, J. Shi, and D. Satz. Modeling and analysis of disease and risk factors through learning bayesian networks from observational data. Quality and Reliability Engineering International, 24(3):291-302, 2008.
    • (2008) Quality and Reliability Engineering International , vol.24 , Issue.3 , pp. 291-302
    • Li, J.1    Shi, J.2    Satz, D.3
  • 23
    • 79953305116 scopus 로고    scopus 로고
    • Evaluating association rules and decision trees to predict multiple target attributes
    • C. Ordonez and K. Zhao. Evaluating association rules and decision trees to predict multiple target attributes. Intelligent Data Analysis, 15(2):173-192, 2011.
    • (2011) Intelligent Data Analysis , vol.15 , Issue.2 , pp. 173-192
    • Ordonez, C.1    Zhao, K.2
  • 28
    • 0032773698 scopus 로고    scopus 로고
    • The basins of attraction of a new hopfield learning rule
    • A. J. Storkey and R. Valabregue. The basins of attraction of a new hopfield learning rule. Neural Networks, 12(6):869-876, 1999.
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 869-876
    • Storkey, A.J.1    Valabregue, R.2
  • 30
    • 33846927997 scopus 로고    scopus 로고
    • Hybrid data mining ensemble for predicting osteoporosis risk
    • IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE
    • W. Wang, G. Richards, and S. Rea. Hybrid data mining ensemble for predicting osteoporosis risk. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, pages 886-889. IEEE, 2006.
    • (2006) Engineering in Medicine and Biology Society, 2005 , pp. 886-889
    • Wang, W.1    Richards, G.2    Rea, S.3
  • 31
    • 23344444578 scopus 로고    scopus 로고
    • WHO Scientific Group. Who technical report series, world health organization, Geneva
    • WHO Scientific Group. Prevention and management of osteoporosis. Who technical report series, world health organization, Geneva, 2003.
    • (2003) Prevention and Management of Osteoporosis


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.