메뉴 건너뛰기




Volumn , Issue , 2013, Pages 91-95

Exploiting DBpedia for web search results clustering

Author keywords

dbpedia; natural language processing; search result clustering; semantic networks

Indexed keywords

COMPETITIVE PERFORMANCE; DBPEDIA; NATURAL LANGUAGE PROCESSING; SEARCH RESULT CLUSTERING; SEARCH-RESULT SNIPPET; SEMANTIC NETWORK; WEB SEARCH RESULTS;

EID: 84888153935     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2509558.2509574     Document Type: Conference Paper
Times cited : (13)

References (36)
  • 5
    • 84893411649 scopus 로고    scopus 로고
    • Using encyclopedic knowledge for named entity disambiguation
    • R. Bunescu and M. Paşca. Using encyclopedic knowledge for named entity disambiguation. In Proc. of EACL-06, pages 9-16, 2006.
    • (2006) Proc. of EACL-06 , pp. 9-16
    • Bunescu, R.1    Paşca, M.2
  • 8
    • 84888157024 scopus 로고    scopus 로고
    • A framework for benchmarking entity-annotation systems
    • M. Cornolti, P. Ferragina, and M. Ciaramita. A framework for benchmarking entity-annotation systems. In Proc. of WWW-13, pages 249-260, 2013.
    • (2013) Proc. of WWW-13 , pp. 249-260
    • Cornolti, M.1    Ferragina, P.2    Ciaramita, M.3
  • 9
    • 78651269398 scopus 로고    scopus 로고
    • MENTA: Inducing multilingual taxonomies from Wikipedia
    • G. de Melo and G. Weikum. MENTA: inducing multilingual taxonomies from Wikipedia. In Proc. of CIKM-10, pages 1099-1108, 2010.
    • (2010) Proc. of CIKM-10 , pp. 1099-1108
    • De Melo, G.1    Weikum, G.2
  • 11
    • 85008532795 scopus 로고    scopus 로고
    • Fast and accurate annotation of short texts with Wikipedia pages
    • P. Ferragina and U. Scaiella. Fast and accurate annotation of short texts with Wikipedia pages. IEEE Software, 29(1):70-75, 2012.
    • (2012) IEEE Software , vol.29 , Issue.1 , pp. 70-75
    • Ferragina, P.1    Scaiella, U.2
  • 13
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972-976, 2007.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 14
    • 84880915872 scopus 로고    scopus 로고
    • Computing semantic relatedness using Wikipedia-based explicit semantic analysis
    • E. Gabrilovich and S. Markovitch. Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In Proc. of IJCAI-07, pages 1606-1611, 2007.
    • (2007) Proc. of IJCAI-07 , pp. 1606-1611
    • Gabrilovich, E.1    Markovitch, S.2
  • 17
    • 84870297580 scopus 로고    scopus 로고
    • Collaboratively built semi-structured content and Artificial Intelligence: The story so far
    • E. Hovy, R. Navigli, and S. P. Ponzetto. Collaboratively built semi-structured content and Artificial Intelligence: The story so far. Artificial Intelligence, 194:2-27, 2013.
    • (2013) Artificial Intelligence , vol.194 , pp. 2-27
    • Hovy, E.1    Navigli, R.2    Ponzetto, S.P.3
  • 18
    • 84874233631 scopus 로고    scopus 로고
    • Unsupervised graph-based topic labelling using DBpedia
    • I. Hulpus, C. Hayes, M. Karnstedt, and D. Greene. Unsupervised graph-based topic labelling using DBpedia. In Proc. of WSDM '13, pages 465-474, 2013.
    • (2013) Proc. of WSDM '13 , pp. 465-474
    • Hulpus, I.1    Hayes, C.2    Karnstedt, M.3    Greene, D.4
  • 19
    • 84859087795 scopus 로고    scopus 로고
    • Knowledge base population: Successful approaches and challenges
    • H. Ji and R. Grishman. Knowledge base population: Successful approaches and challenges. In Proc. of ACL-11, pages 1148-1158, 2011.
    • (2011) Proc. of ACL-11 , pp. 1148-1158
    • Ji, H.1    Grishman, R.2
  • 20
    • 85040607657 scopus 로고    scopus 로고
    • unimelb: Topic modelling-based word sense induction for web snippet clustering
    • J. H. Lau, P. Cook, and T. Baldwin. unimelb: Topic modelling-based word sense induction for web snippet clustering. In Proc. of SemEval-2013, pages 217-221, 2013.
    • (2013) Proc. of SemEval-2013 , pp. 217-221
    • Lau, J.H.1    Cook, P.2    Baldwin, T.3
  • 21
    • 57349134424 scopus 로고    scopus 로고
    • Spectral geometry for simultaneously clustering and ranking query search results
    • Y. Liu, W. Li, Y. Lin, and L. Jing. Spectral geometry for simultaneously clustering and ranking query search results. In Proc. of SIGIR '08, pages 539-546, 2008.
    • (2008) Proc. of SIGIR '08 , pp. 539-546
    • Liu, Y.1    Li, W.2    Lin, Y.3    Jing, L.4
  • 24
    • 84870290509 scopus 로고    scopus 로고
    • Transforming Wikipedia into a large scale multilingual concept network
    • V. Nastase and M. Strube. Transforming Wikipedia into a large scale multilingual concept network. Artificial Intelligence, pages 62-85, 2012.
    • (2012) Artificial Intelligence , pp. 62-85
    • Nastase, V.1    Strube, M.2
  • 25
    • 84875488756 scopus 로고    scopus 로고
    • Clustering and diversifying Web search results with graph-based Word Sense Induction
    • R. Navigli and A. Di Marco. Clustering and diversifying Web search results with graph-based Word Sense Induction. Computational Linguistics, 39(3), 2013.
    • (2013) Computational Linguistics , vol.39 , Issue.3
    • Navigli, R.1    Di Marco, A.2
  • 26
    • 84867003885 scopus 로고    scopus 로고
    • BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network
    • R. Navigli and S. P. Ponzetto. BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial Intelligence, 193:217-250, 2012.
    • (2012) Artificial Intelligence , vol.193 , pp. 217-250
    • Navigli, R.1    Ponzetto, S.P.2
  • 27
    • 84958777335 scopus 로고    scopus 로고
    • Semeval-2013 task 11: Evaluating word sense induction & disambiguation within an end-user application
    • R. Navigli and D. Vannella. Semeval-2013 task 11: Evaluating word sense induction & disambiguation within an end-user application. In Proc. of SemEval-2013, pages 193-201, 2013.
    • (2013) Proc. of SemEval-2013 , pp. 193-201
    • Navigli, R.1    Vannella, D.2
  • 28
    • 20844452619 scopus 로고    scopus 로고
    • A concept-driven algorithm for clustering search results
    • S. Osiński and D. Weiss. A concept-driven algorithm for clustering search results. IEEE Intelligent Systems, 20(3):48-54, 2005.
    • (2005) IEEE Intelligent Systems , vol.20 , Issue.3 , pp. 48-54
    • Osiński, S.1    Weiss, D.2
  • 29
    • 78649843686 scopus 로고    scopus 로고
    • Large-scale taxonomy mapping for restructuring and integrating Wikipedia
    • S. P. Ponzetto and R. Navigli. Large-scale taxonomy mapping for restructuring and integrating Wikipedia. In Proc. of IJCAI-09, pages 2083-2088, 2009.
    • (2009) Proc. of IJCAI-09 , pp. 2083-2088
    • Ponzetto, S.P.1    Navigli, R.2
  • 30
    • 80052992125 scopus 로고    scopus 로고
    • Knowledge-rich Word Sense Disambiguation rivaling supervised systems
    • S. P. Ponzetto and R. Navigli. Knowledge-rich Word Sense Disambiguation rivaling supervised systems. In Proc. of ACL-10, pages 1522-1531, 2010.
    • (2010) Proc. of ACL-10 , pp. 1522-1531
    • Ponzetto, S.P.1    Navigli, R.2
  • 31
    • 38349104539 scopus 로고    scopus 로고
    • Knowledge derived from Wikipedia for computing semantic relatedness
    • S. P. Ponzetto and M. Strube. Knowledge derived from Wikipedia for computing semantic relatedness. Journal of Artificial Intelligence Research, 30:181-212, 2007.
    • (2007) Journal of Artificial Intelligence Research , vol.30 , pp. 181-212
    • Ponzetto, S.P.1    Strube, M.2
  • 32
    • 79955566948 scopus 로고    scopus 로고
    • Taxonomy induction based on a collaboratively built knowledge repository
    • S. P. Ponzetto and M. Strube. Taxonomy induction based on a collaboratively built knowledge repository. Artificial Intelligence, 175:1737-1756, 2011.
    • (2011) Artificial Intelligence , vol.175 , pp. 1737-1756
    • Ponzetto, S.P.1    Strube, M.2
  • 34
    • 51449096194 scopus 로고    scopus 로고
    • Yago: A large ontology from Wikipedia and WordNet
    • F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A large ontology from Wikipedia and WordNet. Journal of Web Semantics, 6(3):203-217, 2008.
    • (2008) Journal of Web Semantics , vol.6 , Issue.3 , pp. 203-217
    • Suchanek, F.M.1    Kasneci, G.2    Weikum, G.3
  • 36
    • 36448950802 scopus 로고    scopus 로고
    • Learn from web search logs to organize search results
    • X. Wang and C. Zhai. Learn from web search logs to organize search results. In Proc. of SIGIR '07, pages 87-94, 2007.
    • (2007) Proc. of SIGIR '07 , pp. 87-94
    • Wang, X.1    Zhai, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.