메뉴 건너뛰기




Volumn 19, Issue 5, 2014, Pages 1557-1568

Numerical simulations and modeling for stochastic biological systems with jumps

Author keywords

Earthquake; Exponential distribution; Infinitesimal method; Jumping noise; L vy process; Stationary Poisson point process

Indexed keywords

BIOINFORMATICS; BIOLOGICAL SYSTEMS; DIFFERENTIAL EQUATIONS; NUMERICAL METHODS; NUMERICAL MODELS; POISSON DISTRIBUTION; STOCHASTIC SYSTEMS;

EID: 84887816836     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2013.09.010     Document Type: Article
Times cited : (77)

References (35)
  • 1
    • 4344689629 scopus 로고
    • Persistence in stochastic food web models
    • Gard T. Persistence in stochastic food web models. Bull Math Biol 1984, 46:357-370.
    • (1984) Bull Math Biol , vol.46 , pp. 357-370
    • Gard, T.1
  • 2
    • 38249040858 scopus 로고
    • Stability for multispecies population models in random environments
    • Gard T. Stability for multispecies population models in random environments. Nonlinear Anal 1986, 10:1411-1419.
    • (1986) Nonlinear Anal , vol.10 , pp. 1411-1419
    • Gard, T.1
  • 11
    • 27744498401 scopus 로고    scopus 로고
    • Stochastic differential equations with jumps
    • Bass R.F. Stochastic differential equations with jumps. Probab Surv 2004, 1:1-19.
    • (2004) Probab Surv , vol.1 , pp. 1-19
    • Bass, R.F.1
  • 12
    • 78651256625 scopus 로고    scopus 로고
    • Multilevel monte carlo algorithms for lévy-driven sdes with Gaussian correction
    • Dereich S. Multilevel monte carlo algorithms for lévy-driven sdes with Gaussian correction. Ann Appl Probab 2011, 21:283-311.
    • (2011) Ann Appl Probab , vol.21 , pp. 283-311
    • Dereich, S.1
  • 13
    • 79956216849 scopus 로고    scopus 로고
    • A multilevel monte carlo algorithm for lévy-driven stochastic differential equations
    • Dereich S., Heidenreich F. A multilevel monte carlo algorithm for lévy-driven stochastic differential equations. Stochastic Process Appl 2011, 121:1565-1587.
    • (2011) Stochastic Process Appl , vol.121 , pp. 1565-1587
    • Dereich, S.1    Heidenreich, F.2
  • 14
    • 0031514913 scopus 로고    scopus 로고
    • The euler scheme for lévy driven stochastic differential equations
    • Protter P., Talay D. The euler scheme for lévy driven stochastic differential equations. Ann Probab 1997, 25:393-423.
    • (1997) Ann Probab , vol.25 , pp. 393-423
    • Protter, P.1    Talay, D.2
  • 15
    • 17444362986 scopus 로고    scopus 로고
    • The approximate euler method for lévy driven stochastic differential equations
    • Jacod J., Kurtz T.G., Méléard S., Protter P. The approximate euler method for lévy driven stochastic differential equations. Inst Math Stat 2005, 41:523-558.
    • (2005) Inst Math Stat , vol.41 , pp. 523-558
    • Jacod, J.1    Kurtz, T.G.2    Méléard, S.3    Protter, P.4
  • 16
    • 22044434402 scopus 로고    scopus 로고
    • Asymptotic error distributions for the euler method for stochastic differential equations
    • Jacod J., Protter P. Asymptotic error distributions for the euler method for stochastic differential equations. Ann Probab 1998, 26:267-307.
    • (1998) Ann Probab , vol.26 , pp. 267-307
    • Jacod, J.1    Protter, P.2
  • 17
    • 0037290933 scopus 로고    scopus 로고
    • Numerical simulation of the solution of a stochastic differential equation driven by a lévy process
    • Rubenthaler S. Numerical simulation of the solution of a stochastic differential equation driven by a lévy process. Stochastic Process Appl 2003, 103:311-349.
    • (2003) Stochastic Process Appl , vol.103 , pp. 311-349
    • Rubenthaler, S.1
  • 18
    • 80051597036 scopus 로고    scopus 로고
    • Competitive Lotka-Volterra population dynamics with jumps
    • Bao J., Mao X., Yin G., Yuan C. Competitive Lotka-Volterra population dynamics with jumps. Nonlinear Anal 2011, 74:6601-6616.
    • (2011) Nonlinear Anal , vol.74 , pp. 6601-6616
    • Bao, J.1    Mao, X.2    Yin, G.3    Yuan, C.4
  • 19
    • 84858280723 scopus 로고    scopus 로고
    • Stochastic population dynamics driven by lévy noise
    • Bao J., Yuan C. Stochastic population dynamics driven by lévy noise. J Math Anal Appl 2012, 391:363-375.
    • (2012) J Math Anal Appl , vol.391 , pp. 363-375
    • Bao, J.1    Yuan, C.2
  • 20
    • 77949485245 scopus 로고    scopus 로고
    • ItÔs stochastic calculus: its surprising power for applications
    • Kunita H. ItÔs stochastic calculus: its surprising power for applications. Stochastic Process Appl 2010, 120:622-652.
    • (2010) Stochastic Process Appl , vol.120 , pp. 622-652
    • Kunita, H.1
  • 21
    • 0030560429 scopus 로고    scopus 로고
    • The law of the euler scheme for stochastic differential equations
    • Bally V., Talay D. The law of the euler scheme for stochastic differential equations. Probab Theory Rel 1996, 104:43-60.
    • (1996) Probab Theory Rel , vol.104 , pp. 43-60
    • Bally, V.1    Talay, D.2
  • 22
    • 0035439412 scopus 로고    scopus 로고
    • An algorithmic introduction to numerical simulation of stochastic differential equations
    • Higham D.J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev 2001, 43:525-546.
    • (2001) SIAM Rev , vol.43 , pp. 525-546
    • Higham, D.J.1
  • 23
    • 0000007761 scopus 로고    scopus 로고
    • Stability analysis of numerical schemes for stochastic differential equations
    • Saito Y., Mitsui T. Stability analysis of numerical schemes for stochastic differential equations. SIAM J Numer Anal 1996, 33:2254-2267.
    • (1996) SIAM J Numer Anal , vol.33 , pp. 2254-2267
    • Saito, Y.1    Mitsui, T.2
  • 24
    • 0012279718 scopus 로고    scopus 로고
    • Strong convergence of euler-type methods for nonlinear stochastic differential equations
    • Higham D., Mao X., Stuart A. Strong convergence of euler-type methods for nonlinear stochastic differential equations. SIAM J Numer Anal 2002, 40:1041-1063.
    • (2002) SIAM J Numer Anal , vol.40 , pp. 1041-1063
    • Higham, D.1    Mao, X.2    Stuart, A.3
  • 25
    • 0002503075 scopus 로고
    • Discretization and simulation of stochastic differential equations
    • Pardoux E., Talay D. Discretization and simulation of stochastic differential equations. Acta Appl Math 1985, 3:23-47.
    • (1985) Acta Appl Math , vol.3 , pp. 23-47
    • Pardoux, E.1    Talay, D.2
  • 28
    • 85196214834 scopus 로고    scopus 로고
    • Statistical distributions of earthquakes and related non-linear features in seismic waves
    • Apostol B. Statistical distributions of earthquakes and related non-linear features in seismic waves. Rom Rep Phys 2006, 58:195.
    • (2006) Rom Rep Phys , vol.58 , pp. 195
    • Apostol, B.1
  • 31
    • 3042829451 scopus 로고    scopus 로고
    • Do earthquakes exhibit self-organized criticality?
    • Yang X., Du S., Ma J. Do earthquakes exhibit self-organized criticality?. Phys Rev Lett 2004, 92:228501.
    • (2004) Phys Rev Lett , vol.92 , pp. 228501
    • Yang, X.1    Du, S.2    Ma, J.3
  • 32
    • 0034473006 scopus 로고    scopus 로고
    • Development of a new approach to earthquake prediction: load/unload response ratio (lurr) theory
    • Yin X., Wang Y., Peng K., Bai Y., Wang H., Yin X. Development of a new approach to earthquake prediction: load/unload response ratio (lurr) theory. Pure Appl Geophys 2000, 157:2365-2383.
    • (2000) Pure Appl Geophys , vol.157 , pp. 2365-2383
    • Yin, X.1    Wang, Y.2    Peng, K.3    Bai, Y.4    Wang, H.5    Yin, X.6
  • 33
    • 79451475954 scopus 로고    scopus 로고
    • Probabilistic prediction of the next earthquake in the nazf (North Anatolian fault zone), Turkey
    • Yilmaz V., Erişoǧlu M., Celik H. Probabilistic prediction of the next earthquake in the nazf (North Anatolian fault zone), Turkey. Dogus Uni Dergisi 2004, 5:243-250.
    • (2004) Dogus Uni Dergisi , vol.5 , pp. 243-250
    • Yilmaz, V.1    Erişoǧlu, M.2    Celik, H.3
  • 34
    • 17744411401 scopus 로고    scopus 로고
    • Probabilistic prediction of the next large earthquake in the michoacán fault-segment of the mexican subduction zone
    • Ferráes S.G. Probabilistic prediction of the next large earthquake in the michoacán fault-segment of the mexican subduction zone. Geofís Int 2003, 42:69-81.
    • (2003) Geofís Int , vol.42 , pp. 69-81
    • Ferráes, S.G.1
  • 35
    • 0016090954 scopus 로고
    • Probability of earthquake occurrence as obtained from a Weibull distribution analysis of crustal strain
    • Hagiwara Y. Probability of earthquake occurrence as obtained from a Weibull distribution analysis of crustal strain. Tectonophysics 1974, 23:313-318.
    • (1974) Tectonophysics , vol.23 , pp. 313-318
    • Hagiwara, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.