-
1
-
-
33745800921
-
Unifying collaborative and content-based filtering
-
J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proc. of ICML, pages 448-456, 2004.
-
(2004)
Proc. of ICML
, pp. 448-456
-
-
Basilico, J.1
Hofmann, T.2
-
2
-
-
0036959356
-
Hybrid recommender systems: Survey and experiments
-
R. Burk. Hybrid recommender systems: survey and experiments. User Modeling and User-Adapted Interaction, 12:331-370, 2002.
-
(2002)
User Modeling and User-Adapted Interaction
, vol.12
, pp. 331-370
-
-
Burk, R.1
-
3
-
-
33847766633
-
Random-walk conputation of similarities between nodes of a graph with application to collaborative recommendation
-
F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk conputation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. on KDE, 9(3):355-369, 2007.
-
(2007)
IEEE Trans. on KDE
, vol.9
, Issue.3
, pp. 355-369
-
-
Fouss, F.1
Pirotte, A.2
Renders, J.-M.3
Saerens, M.4
-
4
-
-
70350656351
-
Trustwalker: A random walk model for combining trust-based and item-based recommendation
-
M. Jamali and M. Ester. Trustwalker: a random walk model for combining trust-based and item-based recommendation. In Proc. of ACM SIGKDD, 2009.
-
(2009)
Proc. of ACM SIGKDD
-
-
Jamali, M.1
Ester, M.2
-
6
-
-
84866757975
-
Recommender systems
-
L. LÍź, C. H. Yueng, M. Medo, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou. Recommender systems. Physics Report, 519:1-49, 2012.
-
(2012)
Physics Report
, vol.519
, pp. 1-49
-
-
Líź, L.1
Yueng, C.H.2
Medo, M.3
Zhang, Y.-C.4
Zhang, Z.-K.5
Zhou, T.6
-
7
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proc. of WWW, pages 285-295, 2001.
-
(2001)
Proc. of WWW
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
8
-
-
23044524651
-
E-commerce recommendation applications
-
B. Schafer, J. A. Konstan, and J. Riedl. E-commerce recommendation applications. Data Mining and Knowledge Discovery, 5(1):115-153, 2001.
-
(2001)
Data Mining and Knowledge Discovery
, vol.5
, Issue.1
, pp. 115-153
-
-
Schafer, B.1
Konstan, J.A.2
Riedl, J.3
-
11
-
-
34748827346
-
Fast random walk with restart and its applications
-
H. H. Tong, C. Faloutsos, and J. Y. Pan. Fast random walk with restart and its applications. In Proc. of ICDM, pages 613-622, 2006.
-
(2006)
Proc. of ICDM
, pp. 613-622
-
-
Tong, H.H.1
Faloutsos, C.2
Pan, J.Y.3
-
12
-
-
80052666619
-
Collaborative topic modeling for recommending scientific articles
-
C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In Proc. of ACM SIGKDD, pages 448-456, 2011.
-
(2011)
Proc. of ACM SIGKDD
, pp. 448-456
-
-
Wang, C.1
Blei, D.M.2
-
13
-
-
33750345680
-
Unifying user-based and item-based collaborative filtering approaches by similarity fusion
-
J. Wang, A. de Vries, and M. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proc. of ACM SIGIR, pages 501-508, 2006.
-
(2006)
Proc. of ACM SIGIR
, pp. 501-508
-
-
Wang, J.1
De Vries, A.2
Reinders, M.3
-
14
-
-
63449125150
-
A random walk method for alleviating the sparsity problem in collaborative filtering
-
H. Yildirim and M. S. Krishnamoorthy. A random walk method for alleviating the sparsity problem in collaborative filtering. In Proc. of ACM RecSys, pages 131-138, 2008.
-
(2008)
Proc. of ACM RecSys
, pp. 131-138
-
-
Yildirim, H.1
Krishnamoorthy, M.S.2
-
15
-
-
84899006908
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scholkopf. Learning with local and global consistency. In Proc. of NIPS, 2004.
-
(2004)
Proc. of NIPS
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.3
Weston, J.4
Scholkopf, B.5
|