메뉴 건너뛰기




Volumn , Issue , 2013, Pages 213-220

Evaluation of recommendations: Rating-prediction and ranking

Author keywords

Ranking; Rating prediction; Recommender systems; Selection bias

Indexed keywords

PRECISION AND RECALL; PREDICTION TASKS; RANKING; RANKING PROBLEMS; REAL-WORLD PROBLEM; RECOMMENDATION ACCURACY; ROOT MEAN SQUARE ERRORS; SELECTION BIAS;

EID: 84887575890     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2507157.2507160     Document Type: Conference Paper
Times cited : (262)

References (25)
  • 1
    • 84887586013 scopus 로고    scopus 로고
    • KDD Cup 2007. Task 1: Who rated what, 2007. http://www.cs.uic.edu/ liub/KDD-cup- 2007/proceedings.html.
    • (2007) Task 1: Who Rated What
  • 2
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17:734-49, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 7
    • 75249088154 scopus 로고    scopus 로고
    • A survey of accuracy evaluation metrics of recommendation tasks
    • A. Gunawardana and G. Shani. A survey of accuracy evaluation metrics of recommendation tasks. Journal of Machine Learning Research, 10:2935-62, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2935-2962
    • Gunawardana, A.1    Shani, G.2
  • 10
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In ACM Conference on Knowledge Discovery and Data Mining, pages 426-34, 2008.
    • (2008) ACM Conference on Knowledge Discovery and Data Mining , pp. 426-434
    • Koren, Y.1
  • 16
    • 57949113756 scopus 로고    scopus 로고
    • Improving regularized singular value decomposition for collaborative filtering
    • A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In KDDCup, 2007.
    • (2007) KDDCup
    • Paterek, A.1
  • 17
    • 84867391520 scopus 로고    scopus 로고
    • Ranking with non-random missing ratings: Influence of popularity and positivity on evaluation metrics
    • B. Pradel, N. Usunier, and P. Gallinari. Ranking with non-random missing ratings: influence of popularity and positivity on evaluation metrics. In ACM Conference on Recommender Systems (RecSys), pages 147-54, 2012.
    • (2012) ACM Conference on Recommender Systems (RecSys) , pp. 147-154
    • Pradel, B.1    Usunier, N.2    Gallinari, P.3
  • 18
    • 0017133178 scopus 로고
    • Inference and missing data
    • D. B. Rubin. Inference and missing data. Biometrika, 63:581-92, 1976.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 22
    • 77956208065 scopus 로고    scopus 로고
    • Training and testing of recommender systems on data missing not at random
    • H. Steck. Training and testing of recommender systems on data missing not at random. In ACM Conference on Knowledge Discovery and Data Mining, pages 713-22, 2010.
    • (2010) ACM Conference on Knowledge Discovery and Data Mining , pp. 713-722
    • Steck, H.1
  • 25
    • 82555195660 scopus 로고    scopus 로고
    • Multi-value probabilistic matrix factorization for IP-TV recommendations
    • Y. Xin and H. Steck. Multi-value probabilistic matrix factorization for IP-TV recommendations. In ACM Conference on Recommender Systems (RecSys), pages 221-8, 2011.
    • (2011) ACM Conference on Recommender Systems (RecSys) , pp. 221-228
    • Xin, Y.1    Steck, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.