-
1
-
-
85047802462
-
A learning theory approach to non-interactive database privacy
-
Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive database privacy. In STOC, 2008.
-
(2008)
STOC
-
-
Blum, A.1
Ligett, K.2
Roth, A.3
-
2
-
-
84885588035
-
Sample complexity bounds for differentially private learning
-
Kamalika Chaudhuri and Daniel Hsu. Sample complexity bounds for differentially private learning. JMLR, 19, 2011.
-
(2011)
JMLR
, vol.19
-
-
Chaudhuri, K.1
Hsu, D.2
-
3
-
-
79955858775
-
Differentially private empirical risk minimization
-
Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk minimization. JMLR, 2011.
-
(2011)
JMLR
-
-
Chaudhuri, K.1
Monteleoni, C.2
Sarwate, A.D.3
-
4
-
-
33646371466
-
Online passive-aggressive algorithms
-
Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online passive-aggressive algorithms. JMLR, 2006.
-
(2006)
JMLR
-
-
Crammer, K.1
Dekel, O.2
Keshet, J.3
Shalev-Shwartz, S.4
Singer, Y.5
-
5
-
-
70350682013
-
Differential privacy and robust statistics
-
Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In STOC, 2009.
-
(2009)
STOC
-
-
Dwork, C.1
Lei, J.2
-
6
-
-
57049085430
-
Our data, ourselves: Privacy via distributed noise generation
-
Cynthia Dwork, Krishnaram Kenthapadi, Frank Mcsherry, Ilya Mironov, and Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, 2006a.
-
(2006)
EUROCRYPT
-
-
Dwork, C.1
Kenthapadi, K.2
Mcsherry, F.3
Mironov, I.4
Naor, M.5
-
7
-
-
33746086554
-
Calibrating noise to sensitivity in private data analysis
-
Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006b.
-
(2006)
TCC
-
-
Dwork, C.1
Mcsherry, F.2
Nissim, K.3
Smith, A.4
-
8
-
-
77954717626
-
Differential privacy under continual observation
-
Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under continual observation. In STOC, 2010a.
-
(2010)
STOC
-
-
Dwork, C.1
Naor, M.2
Pitassi, T.3
Rothblum, G.N.4
-
12
-
-
78751489078
-
A multiplicative weights mechanism for privacy-preserving data analysis
-
Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In FOCS, 2010.
-
(2010)
FOCS
-
-
Hardt, M.1
Rothblum, G.N.2
-
14
-
-
35348918820
-
Logarithmic regret algorithms for online convex optimization
-
Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. Machine Learning, 69, 2007.
-
(2007)
Machine Learning
, vol.69
-
-
Hazan, E.1
Agarwal, A.2
Kale, S.3
-
15
-
-
84887384542
-
Mind the duality gap: Logarithmic regret algorithms for online optimization
-
Sham Kakade and Shai Shalev-Shwartz. Mind the duality gap: Logarithmic regret algorithms for online optimization. In NIPS, 2008.
-
(2008)
NIPS
-
-
Kakade, S.1
Shalev-Shwartz, S.2
-
16
-
-
85064816019
-
On the generalization ability of online strongly convex programming algorithms
-
Sham M. Kakade and Ambuj Tewari. On the generalization ability of online strongly convex programming algorithms. In NIPS, 2008.
-
(2008)
NIPS
-
-
Kakade, S.M.1
Tewari, A.2
-
18
-
-
0008815681
-
Exponentiated gradient versus gradient descent for linear predictors
-
Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132, 1995.
-
(1995)
Information and Computation
, vol.132
-
-
Kivinen, J.1
Warmuth, M.K.2
-
19
-
-
77956523730
-
Implicit online learning
-
Brian Kulis and Peter L. Bartlett. Implicit online learning. In ICML, 2010.
-
(2010)
ICML
-
-
Kulis, B.1
Bartlett, P.L.2
-
20
-
-
85161973081
-
Multiparty differential privacy via aggregation of locally trained classifiers
-
Shantanu Rane Manas Pathak and Bhiksha Raj. Multiparty differential privacy via aggregation of locally trained classifiers. In NIPS, 2010.
-
(2010)
NIPS
-
-
Manas Pathak, S.R.1
Raj, B.2
-
21
-
-
46749128577
-
Mechanism design via differential privacy
-
Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, 2007.
-
(2007)
FOCS
-
-
Mcsherry, F.1
Talwar, K.2
-
23
-
-
84898447308
-
-
CoRR, abs/1105.4701
-
Tomaso Poggio, Stephen Voinea, and Lorenzo Rosasco. Online learning, stability, and stochastic gradient descent. CoRR, abs/1105.4701, 2011.
-
(2011)
Online Learning, Stability, and Stochastic Gradient Descent
-
-
Poggio, T.1
Voinea, S.2
Rosasco, L.3
-
25
-
-
80955145156
-
-
CoRR, abs/0911.5708
-
Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, and Nina Taft. Learning in a large function space: Privacy-preserving mechanisms for SVM learning. CoRR, abs/0911.5708, 2009.
-
(2009)
Learning in a Large Function Space: Privacy-preserving Mechanisms for SVM Learning
-
-
Rubinstein Benjamin, I.P.1
Bartlett, P.L.2
Huang, L.3
Taft, N.4
-
26
-
-
85161972679
-
Probabilistic inference and differential privacy
-
Oliver Williams and Frank McSherry. Probabilistic inference and differential privacy. In NIPS, 2010.
-
(2010)
NIPS
-
-
Williams, O.1
Mcsherry, F.2
-
27
-
-
1942484421
-
Online convex programming and generalized infinitesimal gradient ascent
-
Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, 2003.
-
(2003)
ICML
-
-
Zinkevich, M.1
|