메뉴 건너뛰기




Volumn 23, Issue , 2012, Pages

Differentially private online learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA PRIVACY; ERROR ANALYSIS; FORECASTING; FUNCTIONS; ONLINE SYSTEMS; SEARCH ENGINES;

EID: 84887484789     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (79)

References (27)
  • 1
    • 85047802462 scopus 로고    scopus 로고
    • A learning theory approach to non-interactive database privacy
    • Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive database privacy. In STOC, 2008.
    • (2008) STOC
    • Blum, A.1    Ligett, K.2    Roth, A.3
  • 2
    • 84885588035 scopus 로고    scopus 로고
    • Sample complexity bounds for differentially private learning
    • Kamalika Chaudhuri and Daniel Hsu. Sample complexity bounds for differentially private learning. JMLR, 19, 2011.
    • (2011) JMLR , vol.19
    • Chaudhuri, K.1    Hsu, D.2
  • 3
    • 79955858775 scopus 로고    scopus 로고
    • Differentially private empirical risk minimization
    • Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk minimization. JMLR, 2011.
    • (2011) JMLR
    • Chaudhuri, K.1    Monteleoni, C.2    Sarwate, A.D.3
  • 5
    • 70350682013 scopus 로고    scopus 로고
    • Differential privacy and robust statistics
    • Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In STOC, 2009.
    • (2009) STOC
    • Dwork, C.1    Lei, J.2
  • 6
  • 7
    • 33746086554 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006b.
    • (2006) TCC
    • Dwork, C.1    Mcsherry, F.2    Nissim, K.3    Smith, A.4
  • 8
    • 77954717626 scopus 로고    scopus 로고
    • Differential privacy under continual observation
    • Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under continual observation. In STOC, 2010a.
    • (2010) STOC
    • Dwork, C.1    Naor, M.2    Pitassi, T.3    Rothblum, G.N.4
  • 9
    • 78751522594 scopus 로고    scopus 로고
    • Boosting and differential privacy
    • Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential privacy. In FOCS, 2010b.
    • (2010) FOCS
    • Dwork, C.1    Rothblum, G.N.2    Vadhan, S.P.3
  • 12
    • 78751489078 scopus 로고    scopus 로고
    • A multiplicative weights mechanism for privacy-preserving data analysis
    • Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In FOCS, 2010.
    • (2010) FOCS
    • Hardt, M.1    Rothblum, G.N.2
  • 14
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. Machine Learning, 69, 2007.
    • (2007) Machine Learning , vol.69
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 15
    • 84887384542 scopus 로고    scopus 로고
    • Mind the duality gap: Logarithmic regret algorithms for online optimization
    • Sham Kakade and Shai Shalev-Shwartz. Mind the duality gap: Logarithmic regret algorithms for online optimization. In NIPS, 2008.
    • (2008) NIPS
    • Kakade, S.1    Shalev-Shwartz, S.2
  • 16
    • 85064816019 scopus 로고    scopus 로고
    • On the generalization ability of online strongly convex programming algorithms
    • Sham M. Kakade and Ambuj Tewari. On the generalization ability of online strongly convex programming algorithms. In NIPS, 2008.
    • (2008) NIPS
    • Kakade, S.M.1    Tewari, A.2
  • 18
    • 0008815681 scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132, 1995.
    • (1995) Information and Computation , vol.132
    • Kivinen, J.1    Warmuth, M.K.2
  • 19
    • 77956523730 scopus 로고    scopus 로고
    • Implicit online learning
    • Brian Kulis and Peter L. Bartlett. Implicit online learning. In ICML, 2010.
    • (2010) ICML
    • Kulis, B.1    Bartlett, P.L.2
  • 20
    • 85161973081 scopus 로고    scopus 로고
    • Multiparty differential privacy via aggregation of locally trained classifiers
    • Shantanu Rane Manas Pathak and Bhiksha Raj. Multiparty differential privacy via aggregation of locally trained classifiers. In NIPS, 2010.
    • (2010) NIPS
    • Manas Pathak, S.R.1    Raj, B.2
  • 21
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, 2007.
    • (2007) FOCS
    • Mcsherry, F.1    Talwar, K.2
  • 26
    • 85161972679 scopus 로고    scopus 로고
    • Probabilistic inference and differential privacy
    • Oliver Williams and Frank McSherry. Probabilistic inference and differential privacy. In NIPS, 2010.
    • (2010) NIPS
    • Williams, O.1    Mcsherry, F.2
  • 27
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, 2003.
    • (2003) ICML
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.