메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2611-2618

Online dominant and anomalous behavior detection in videos

Author keywords

Anomaly detection; Bag of video words; Behavior learning; Contextual information; Hierarchical scene modeling; Spatio Temporal compositions; Surveillance; Video parsing

Indexed keywords

ANOMALY DETECTION; BAG OF VIDEO WORDS; BEHAVIOR LEARNING; CONTEXTUAL INFORMATION; SCENE MODEL; SPATIO-TEMPORAL; VIDEO PARSING;

EID: 84887384449     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.337     Document Type: Conference Paper
Times cited : (152)

References (30)
  • 1
    • 39549091484 scopus 로고    scopus 로고
    • Robust real-time unusual event detection using multiple fixed-location monitors
    • A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell., 30(3):555-560, 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.3 , pp. 555-560
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3    Reinitz, D.4
  • 2
    • 78549284938 scopus 로고    scopus 로고
    • Abnormality detection using low-level co-occurring events
    • Y. Benezeth, P.-M. Jodoin, and V. Saligrama. Abnormality detection using low-level co-occurring events. Pattern Recogn. Lett., 32(3):423-431, 2011.
    • (2011) Pattern Recogn. Lett. , vol.32 , Issue.3 , pp. 423-431
    • Benezeth, Y.1    Jodoin, P.-M.2    Saligrama, V.3
  • 3
    • 70450192631 scopus 로고    scopus 로고
    • Abnormal events detection based on spatio-temporal co-occurences
    • Y. Benezeth, P. M. Jodoin, V. Saligrama, and C. Rosenberger. Abnormal events detection based on spatio-temporal co-occurences. In CVPR, pages 2458-2465, 2009.
    • (2009) CVPR , pp. 2458-2465
    • Benezeth, Y.1    Jodoin, P.M.2    Saligrama, V.3    Rosenberger, C.4
  • 4
    • 84856093296 scopus 로고    scopus 로고
    • Multi-scale and realtime non-parametric approach for anomaly detection and localization
    • M. Bertini, A. Del Bimbo, and L. Seidenari. Multi-scale and realtime non-parametric approach for anomaly detection and localization. Compt. Vis. Image Und., 116(3):320-329, 2012.
    • (2012) Compt. Vis. Image Und. , vol.116 , Issue.3 , pp. 320-329
    • Bertini, M.1    Del Bimbo, A.2    Seidenari, L.3
  • 6
    • 34247614190 scopus 로고    scopus 로고
    • Detecting irregularities in images and in video
    • O. Boiman and M. Irani. Detecting irregularities in images and in video. Int. J. Comput. Vision, 74(1):17-31, 2007.
    • (2007) Int. J. Comput. Vision , vol.74 , Issue.1 , pp. 17-31
    • Boiman, O.1    Irani, M.2
  • 7
    • 80052872021 scopus 로고    scopus 로고
    • Sparse reconstruction cost for abnormal event detection
    • Y. Cong, J. Yuan, and J. Liu. Sparse reconstruction cost for abnormal event detection. In CVPR, pages 3449-3456, 2011.
    • (2011) CVPR , pp. 3449-3456
    • Cong, Y.1    Yuan, J.2    Liu, J.3
  • 8
    • 69949139407 scopus 로고    scopus 로고
    • Motion segmentation and abnormal behavior detection via behavior clustering
    • E. B. Ermis, V. Saligrama, P. M. Jodoin, and J. Konrad. Motion segmentation and abnormal behavior detection via behavior clustering. In ICIP, pages 769-772, 2008.
    • (2008) ICIP , pp. 769-772
    • Ermis, E.B.1    Saligrama, V.2    Jodoin, P.M.3    Konrad, J.4
  • 11
    • 84867864817 scopus 로고    scopus 로고
    • Video behaviour mining using a dynamic topic model
    • T. Hospedales, S. Gong, and T. Xiang. Video behaviour mining using a dynamic topic model. Int. J. Comput. Vision, pages 1-21, 2012.
    • (2012) Int. J. Comput. Vision , pp. 1-21
    • Hospedales, T.1    Gong, S.2    Xiang, T.3
  • 12
    • 80054954521 scopus 로고    scopus 로고
    • Identifying rare and subtle behaviors: A weakly supervised joint topic model
    • T. M. Hospedales, L. Jian, G. Shaogang, and X. Tao. Identifying rare and subtle behaviors: A weakly supervised joint topic model. IEEE Trans. Pattern Anal. Mach. Intell., 33(12):2451-2464, 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.12 , pp. 2451-2464
    • Hospedales, T.M.1    Jian, L.2    Shaogang, G.3    Tao, X.4
  • 15
    • 70450169881 scopus 로고    scopus 로고
    • Observe locally, infer globally: A spacetime mrf for detecting abnormal activities with incremental updates
    • J. Kim and K. Grauman. Observe locally, infer globally: A spacetime mrf for detecting abnormal activities with incremental updates. In CVPR, pages 2921-2928, 2009.
    • (2009) CVPR , pp. 2921-2928
    • Kim, J.1    Grauman, K.2
  • 16
    • 21644463503 scopus 로고    scopus 로고
    • Real-time foregroundbackground segmentation using codebook model
    • K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis. Real-time foregroundbackground segmentation using codebook model. Real-Time Imaging, 11(3):172-185, 2005.
    • (2005) Real-Time Imaging , vol.11 , Issue.3 , pp. 172-185
    • Kim, K.1    Chalidabhongse, T.H.2    Harwood, D.3    Davis, L.4
  • 17
    • 84859265050 scopus 로고    scopus 로고
    • Learning behavioural context
    • J. Li, S. Gong, and T. Xiang. Learning behavioural context. Int. J. Comput. Vision, 97(3):276-304, 2012.
    • (2012) Int. J. Comput. Vision , vol.97 , Issue.3 , pp. 276-304
    • Li, J.1    Gong, S.2    Xiang, T.3
  • 19
    • 56749183654 scopus 로고    scopus 로고
    • Scene modeling and change detection in dynamic scenes: A subspace approach
    • A. Mittal, A. Monnet, and N. Paragios. Scene modeling and change detection in dynamic scenes: A subspace approach. Compt. Vis. Image Und., 113(1):63-79, 2009.
    • (2009) Compt. Vis. Image Und. , vol.113 , Issue.1 , pp. 63-79
    • Mittal, A.1    Monnet, A.2    Paragios, N.3
  • 20
    • 80053105598 scopus 로고    scopus 로고
    • Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach
    • B. T. Morris and M. M. Trivedi. Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach. IEEE Trans. Pattern Anal. Mach. Intell., 33(11):2287-2301, 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.11 , pp. 2287-2301
    • Morris, B.T.1    Trivedi, M.M.2
  • 21
    • 79952952363 scopus 로고    scopus 로고
    • Spatiotemporal localization and categorization of human actions in unsegmented image sequences
    • A. Oikonomopoulos, I. Patras, and M. Pantic. Spatiotemporal localization and categorization of human actions in unsegmented image sequences. IEEE Trans. Image Process., 20(4):1126-1140, 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.4 , pp. 1126-1140
    • Oikonomopoulos, A.1    Patras, I.2    Pantic, M.3
  • 22
    • 84870239401 scopus 로고    scopus 로고
    • Incremental behavior modeling and suspicious activity detection
    • K. Ouivirach, S. Gharti, and M. N. Dailey. Incremental behavior modeling and suspicious activity detection. Pattern Recognition, 46(3):671-680, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 671-680
    • Ouivirach, K.1    Gharti, S.2    Dailey, M.N.3
  • 23
    • 80054892556 scopus 로고    scopus 로고
    • Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture
    • V. Reddy, C. Sanderson, and B. C. Lovell. Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture. In CVPR Workshops, pages 55-61, 2011.
    • (2011) CVPR Workshops , pp. 55-61
    • Reddy, V.1    Sanderson, C.2    Lovell, B.C.3
  • 24
    • 84867872017 scopus 로고    scopus 로고
    • A prototype learning framework using emd: Application to complex scenes analysis
    • E. Ricci, G. Zen, N. Sebe, and S. Messelodi. A prototype learning framework using emd: Application to complex scenes analysis. IEEE Trans. Pattern Anal. Mach. Intell., PP(99):1-1, 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.99 , pp. 1-1
    • Ricci, E.1    Zen, G.2    Sebe, N.3    Messelodi, S.4
  • 25
    • 84878345379 scopus 로고    scopus 로고
    • A multi-scale hierarchical codebook method for human action recognition in videos using a single example
    • M. J. Roshtkhari and M. D. Levine. A multi-scale hierarchical codebook method for human action recognition in videos using a single example. In Conf. Computer and Robot Vision, pages 182-189, 2012.
    • (2012) Conf. Computer and Robot Vision , pp. 182-189
    • Roshtkhari, M.J.1    Levine, M.D.2
  • 26
    • 84866703571 scopus 로고    scopus 로고
    • Video anomaly detection based on local statistical aggregates
    • V. Saligrama and C. Zhu. Video anomaly detection based on local statistical aggregates. In CVPR, pages 2112-2119, 2012.
    • (2012) CVPR , pp. 2112-2119
    • Saligrama, V.1    Zhu, C.2
  • 27
    • 37849037402 scopus 로고    scopus 로고
    • A 3-dimensional sift descriptor and its application to action recognition
    • Augsburg, Germany. ACM
    • P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its application to action recognition. In International conference on Multimedia, pages 357-360, Augsburg, Germany, 2007. ACM.
    • (2007) International Conference on Multimedia , pp. 357-360
    • Scovanner, P.1    Ali, S.2    Shah, M.3
  • 28
    • 78149300183 scopus 로고    scopus 로고
    • Anomalous behaviour detection using spatiotemporal oriented energies, subset inclusion histogram comparison and event-driven processing
    • A. Zaharescu and R. Wildes. Anomalous behaviour detection using spatiotemporal oriented energies, subset inclusion histogram comparison and event-driven processing. In ECCV, pages 563-576, 2010.
    • (2010) ECCV , pp. 563-576
    • Zaharescu, A.1    Wildes, R.2
  • 29
    • 79961168344 scopus 로고    scopus 로고
    • Human behavior clustering for anomaly detection
    • X. Zhu and Z. Liu. Human behavior clustering for anomaly detection. Frontiers of Computer Science in China, 5(3):279-289, 2011.
    • (2011) Frontiers of Computer Science in China , vol.5 , Issue.3 , pp. 279-289
    • Zhu, X.1    Liu, Z.2
  • 30
    • 10044240378 scopus 로고    scopus 로고
    • Improved adaptive gaussian mixture model for background subtraction
    • Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. In ICPR, pages 28-31, 2004.
    • (2004) ICPR , pp. 28-31
    • Zivkovic, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.