-
2
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Inthe Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
3
-
-
51949090223
-
In defense of nearest-neighbor based image classification
-
IEEE
-
O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8. Ieee, 2008.
-
(2008)
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
, pp. 1-8
-
-
Boiman, O.1
Shechtman, E.2
Irani, M.3
-
4
-
-
33749252873
-
-
MIT Press, Cambridge, MA
-
O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, Cambridge, MA, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
5
-
-
24644524200
-
Visual categorization with bags of keypoints
-
G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints. In Workshop on statistical learning in computer vision, ECCV, volume 1, page 22, 2004.
-
(2004)
Workshop on Statistical Learning in Computer Vision, ECCV
, vol.1
, pp. 22
-
-
Csurka, G.1
Dance, C.2
Fan, L.3
Willamowski, J.4
Bray, C.5
-
6
-
-
80052411583
-
Manifold coarse graining for online semi-supervised learning
-
M. Farajtabar, A. Shaban, H. Rabiee, and M. Rohban. Manifold coarse graining for online semi-supervised learning. Machine Learning and Knowledge Discovery in Databases, pages 391-406, 2011.
-
(2011)
Machine Learning and Knowledge Discovery in Databases
, pp. 391-406
-
-
Farajtabar, M.1
Shaban, A.2
Rabiee, H.3
Rohban, M.4
-
7
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70, 2007.
-
(2007)
Computer Vision and Image Understanding
, vol.106
, Issue.1
, pp. 59-70
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
8
-
-
24644483228
-
A sparse object category model for efficient learning and exhaustive recognition
-
IEEE
-
R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient learning and exhaustive recognition. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 380-387. IEEE, 2005.
-
(2005)
Computer Vision and Pattern Recognition. 2005. CVPR 2005, IEEE Computer Society Conference on
, vol.1
, pp. 380-387
-
-
Fergus, R.1
Perona, P.2
Zisserman, A.3
-
10
-
-
77955994285
-
Local features are not lonely-laplacian sparse coding for image classification
-
IEEE
-
S. Gao, I. Tsang, L. Chia, and P. Zhao. Local features are not lonely-laplacian sparse coding for image classification. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3555-3561. IEEE, 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR)2010 IEEE Conference on
, pp. 3555-3561
-
-
Gao, S.1
Tsang, I.2
Chia, L.3
Zhao, P.4
-
15
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
IEEE
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2169-2178. Ieee, 2006.
-
(2006)
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
, vol.2
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
18
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91-110, 2004.
-
(2004)
International Journal of Computer Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.1
-
19
-
-
78149348137
-
Improving the fisher kernel for large-scale image classification
-
F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. Computer Vision-ECCV 2010, pages 143-156, 2010.
-
(2010)
Computer Vision-ECCV 2010
, pp. 143-156
-
-
Perronnin, F.1
Sánchez, J.2
Mensink, T.3
-
20
-
-
34948903793
-
Object retrieval with large vocabularies and fast spatial matching
-
IEEE
-
J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pages 1-8. Ieee, 2007.
-
(2007)
Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on
, pp. 1-8
-
-
Philbin, J.1
Chum, O.2
Isard, M.3
Sivic, J.4
Zisserman, A.5
-
21
-
-
80053165996
-
Online semisupervised learning on quantized graphs
-
M. Valko, B. Kveton, L. Huang, and D. Ting. Online semisupervised learning on quantized graphs. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI, 2010.
-
(2010)
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI
-
-
Valko, M.1
Kveton, B.2
Huang, L.3
Ting, D.4
-
22
-
-
77952671498
-
Visual word ambiguity
-
J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J. M. Geusebroek. Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7):1271-1283, 2010.
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.7
, pp. 1271-1283
-
-
Van Gemert, J.C.1
Veenman, C.J.2
Smeulders, A.W.M.3
Geusebroek, J.M.4
-
23
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
IEEE
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3360-3367. IEEE, 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR)2010 IEEE Conference on
, pp. 3360-3367
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
24
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
IEEE
-
J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1794-1801. Ieee, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
, pp. 1794-1801
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.4
-
26
-
-
31844438481
-
Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
-
ACM
-
X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. In Proceedings of the 22nd international conference on Machine learning, pages 1052-1059. ACM, 2005.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning
, pp. 1052-1059
-
-
Zhu, X.1
Lafferty, J.2
|